IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p773-d730180.html
   My bibliography  Save this article

Time Series Forecasting for Energy Consumption

Author

Listed:
  • M. C. Pegalajar

    (Department of Computer Science and Artificial Intelligence, University of Granada, 18014 Granada, Spain)

  • L. G. B. Ruiz

    (Department of Software Engineering, University of Granada, 18014 Granada, Spain)

Abstract

Introduction In the last few years, there has been considerable progress in time series forecasting algorithms, which are becoming more and more accurate, and their applications are numerous and varied [...]

Suggested Citation

  • M. C. Pegalajar & L. G. B. Ruiz, 2022. "Time Series Forecasting for Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-3, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:773-:d:730180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Ramos & Pedro Faria & Zita Vale & João Mourinho & Regina Correia, 2020. "Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning," Energies, MDPI, vol. 13(18), pages 1-18, September.
    2. Fermín Rodríguez & Fernando Martín & Luis Fontán & Ainhoa Galarza, 2020. "Very Short-Term Load Forecaster Based on a Neural Network Technique for Smart Grid Control," Energies, MDPI, vol. 13(19), pages 1-19, October.
    3. Shahrooz Abghari & Veselka Boeva & Jens Brage & Håkan Grahn, 2020. "A Higher Order Mining Approach for the Analysis of Real-World Datasets," Energies, MDPI, vol. 13(21), pages 1-23, November.
    4. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. J. R. S. Iruela & L. G. B. Ruiz & M. I. Capel & M. C. Pegalajar, 2021. "A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm," Energies, MDPI, vol. 14(13), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Manuel I. Capel, 2022. "Artificial Neuron-Based Model for a Hybrid Real-Time System: Induction Motor Case Study," Mathematics, MDPI, vol. 10(18), pages 1-30, September.
    3. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    4. Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
    5. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    6. Joanna Henzel & Łukasz Wróbel & Marcin Fice & Marek Sikora, 2022. "Energy Consumption Forecasting for the Digital-Twin Model of the Building," Energies, MDPI, vol. 15(12), pages 1-21, June.
    7. Aleksey I. Shinkevich & Irina G. Ershova & Farida F. Galimulina, 2022. "Forecasting the Efficiency of Innovative Industrial Systems Based on Neural Networks," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
    8. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    9. Manuel R. Arahal & Manuel G. Ortega & Manuel G. Satué, 2021. "Chiller Load Forecasting Using Hyper-Gaussian Nets," Energies, MDPI, vol. 14(12), pages 1-15, June.
    10. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    11. Feras Alasali & Husam Foudeh & Esraa Mousa Ali & Khaled Nusair & William Holderbaum, 2021. "Forecasting and Modelling the Uncertainty of Low Voltage Network Demand and the Effect of Renewable Energy Sources," Energies, MDPI, vol. 14(8), pages 1-31, April.
    12. Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
    13. Tingting Hou & Rengcun Fang & Jinrui Tang & Ganheng Ge & Dongjun Yang & Jianchao Liu & Wei Zhang, 2021. "A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms," Energies, MDPI, vol. 14(22), pages 1-21, November.
    14. Michael Wood & Emanuele Ogliari & Alfredo Nespoli & Travis Simpkins & Sonia Leva, 2023. "Day Ahead Electric Load Forecast: A Comprehensive LSTM-EMD Methodology and Several Diverse Case Studies," Forecasting, MDPI, vol. 5(1), pages 1-18, March.
    15. Jicheng Liu & Yu Yin, 2022. "Power Load Forecasting Considering Climate Factors Based on IPSO-Elman Method in China," Energies, MDPI, vol. 15(3), pages 1-23, February.
    16. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    17. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.
    18. L. Cabezón & L. G. B. Ruiz & D. Criado-Ramón & E. J. Gago & M. C. Pegalajar, 2022. "Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study," Energies, MDPI, vol. 15(22), pages 1-14, November.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:773-:d:730180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.