Direct Contact Condensers: A Comprehensive Review of Experimental and Numerical Investigations on Direct-Contact Condensation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
- Fei, Yu & Xiao, Qingtai & Xu, Jianxin & Pan, Jianxin & Wang, Shibo & Wang, Hua & Huang, Junwei, 2015. "A novel approach for measuring bubbles uniformity and mixing efficiency in a direct contact heat exchanger," Energy, Elsevier, vol. 93(P2), pages 2313-2320.
- Traverso, A., 2010. "Humidification tower for humid air gas turbine cycles: Experimental analysis," Energy, Elsevier, vol. 35(2), pages 894-901.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Madejski, Paweł & Banasiak, Krzysztof & Ziółkowski, Paweł & Mikielewicz, Dariusz & Mikielewicz, Jarosław & Kuś, Tomasz & Karch, Michał & Michalak, Piotr & Amiri, Milad & Dąbrowski, Paweł & Stasiak, Ka, 2023. "Development of a spray-ejector condenser for the use in a negative CO2 emission gas power plant," Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
- Jun Yang & Biao Li & Hui Sun & Jianxin Xu & Hua Wang, 2023. "Experimental Measurement and Theoretical Prediction of Bubble Growth and Convection Heat Transfer Coefficient in Direct Contact Heat Transfer," Energies, MDPI, vol. 16(3), pages 1-19, January.
- Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
- Bin Yang & Xin Zhu & Boan Wei & Minzhang Liu & Yifan Li & Zhihan Lv & Faming Wang, 2023. "Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review," Energies, MDPI, vol. 16(3), pages 1-24, February.
- Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
- Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
- Thiel, Gregory P. & McGovern, Ronan K. & Zubair, Syed M. & Lienhard V, John H., 2014. "Thermodynamic equipartition for increased second law efficiency," Applied Energy, Elsevier, vol. 118(C), pages 292-299.
- McGovern, Ronan K. & Thiel, Gregory P. & Prakash Narayan, G. & Zubair, Syed M. & Lienhard, John H., 2013. "Performance limits of zero and single extraction humidification-dehumidification desalination systems," Applied Energy, Elsevier, vol. 102(C), pages 1081-1090.
- Junjie Chen & Dong Han & Weifeng He & Majid Amidpour, 2021. "Establishing Surrogate Model to Predict the Optimal Thermodynamic and Economic Performance of a Packed Bed Humidifier via Multi-Objective Optimization," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
- Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.
- Kim, Taeyoung & Lee, Seungjae & Park, Heekyung, 2011. "The potential of PEM fuel cell for a new drinking water source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3676-3689.
- Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
- Huang, Xin & Chen, Hu & Ling, Xiang & Liu, Lin & Huhe, Taoli, 2022. "Investigation of heat and mass transfer and gas–liquid thermodynamic process paths in a humidifier," Energy, Elsevier, vol. 261(PA).
- Abhishek Tiwari & Manish K. Rathod & Amit Kumar, 2023. "A comprehensive review of solar-driven desalination systems and its advancements," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1052-1083, February.
- Sadeghi, Mohsen & Yari, Mortaza & Mahmoudi, S.M.S. & Jafari, Moharram, 2017. "Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle – Desalination system," Applied Energy, Elsevier, vol. 208(C), pages 239-251.
- Audah, N. & Ghaddar, N. & Ghali, K., 2011. "Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs," Applied Energy, Elsevier, vol. 88(11), pages 3726-3736.
- Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
- Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
- Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
- Wang, Zidong & Chen, Hanping & Weng, Shilie, 2013. "New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air," Energy, Elsevier, vol. 58(C), pages 606-616.
More about this item
Keywords
direct contact heat exchanger; direct contact condensation; CFD modeling; test rig;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9312-:d:997591. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.