IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9187-d992986.html
   My bibliography  Save this article

Feasibility of Harris Hawks Optimization in Combination with Fuzzy Inference System Predicting Heating Load Energy Inside Buildings

Author

Listed:
  • Hossein Moayedi

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    School of Engineering and & Technology, Duy Tan University, Da Nang 550000, Vietnam)

  • Bao Le Van

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    School of Engineering and & Technology, Duy Tan University, Da Nang 550000, Vietnam)

Abstract

Heating and cooling systems account for a considerable portion of the energy consumed for domestic reasons in Europe. Burning fossil fuels is the main way to produce this energy, which has a detrimental effect on the environment. It is essential to consider a building’s characteristics when determining how much heating and cooling is necessary. As a result, a study of the related buildings’ characteristics, such as the type of cooling and heating systems required for maintaining appropriate indoor air conditions, can help in the design and construction of energy-efficient buildings. Numerous studies have used machine learning to predict cooling and heating systems based on variables that include relative compactness, orientation, overall height, roof area, wall area, surface area, glazing area, and glazing area distribution. Fuzzy logic, however, is not used in any of these methods. In this article, we study a fuzzy logic approach, i.e., HHO−ANFIS (combination of Harris hawks optimization and adaptive neuro-fuzzy interface system), to predict the heating load in residential buildings and investigate the feasibility of this technique in predicting the heating load. Fuzzy techniques obtain perfect results. The analysis results show that the HHO−ANFIS with a population size of 400, the highest value of R2 (0.98709 and 0.98794), and the lowest value of RMSE (0.08769 and 0.08281) in the training and testing dataset, respectively, can predict the heating load with high accuracy. According to the high value of R2 (98%) and low value of RMSE, HHO−ANFIS can be used in predicting the heating load of residential buildings.

Suggested Citation

  • Hossein Moayedi & Bao Le Van, 2022. "Feasibility of Harris Hawks Optimization in Combination with Fuzzy Inference System Predicting Heating Load Energy Inside Buildings," Energies, MDPI, vol. 15(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9187-:d:992986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    2. Yinghao Zhao & Hesong Hu & Lunhua Bai & Mengxiong Tang & Hang Chen & Dingli Su, 2021. "Fragility Analyses of Bridge Structures Using the Logarithmic Piecewise Function-Based Probabilistic Seismic Demand Model," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    3. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    4. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    5. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    6. Di Foggia, Giacomo, 2018. "Energy efficiency measures in buildings for achieving sustainable development goals," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(11).
    7. Arash Moradzadeh & Omid Sadeghian & Kazem Pourhossein & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Improving Residential Load Disaggregation for Sustainable Development of Energy via Principal Component Analysis," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    8. Hossein Moayedi & Amir Mosavi, 2021. "Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-25, March.
    9. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dinh Tuan Hai & Nguyen Kim Hoang, 2023. "Evaluating the Stakeholders’ Satisfaction with Design and Construction of Resilient Houses in Vietnam," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    2. Wang, Guimei & Moayedi, Hossein & Thi, Quynh T. & Mirzaei, Mojtaba, 2024. "Evaluation of heating load energy performance in residential buildings through five nature-inspired optimization algorithms," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    2. Wenping Xue & Xiao Cao & Guangfa Zhang & Gang Tan & Zilong Liu & Kangji Li, 2022. "Structural Optimization of Heat Sink for Thermoelectric Conversion Unit in Personal Comfort System," Energies, MDPI, vol. 15(8), pages 1-16, April.
    3. Loke Kok Foong & Binh Nguyen Le, 2022. "Teaching–Learning–Based Optimization (TLBO) in Hybridized with Fuzzy Inference System Estimating Heating Loads," Energies, MDPI, vol. 15(21), pages 1-20, November.
    4. Yang, Ting & Zhao, Liyuan & Li, Wei & Wu, Jianzhong & Zomaya, Albert Y., 2021. "Towards healthy and cost-effective indoor environment management in smart homes: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 300(C).
    5. Wang, Guimei & Mukhtar, Azfarizal & Moayedi, Hossein & Khalilpoor, Nima & Tt, Quynh, 2024. "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector," Energy, Elsevier, vol. 298(C).
    6. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Francesca Marcello & Virginia Pilloni & Daniele Giusto, 2019. "Sensor-Based Early Activity Recognition Inside Buildings to Support Energy and Comfort Management Systems," Energies, MDPI, vol. 12(13), pages 1-18, July.
    8. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    9. Jazizadeh, Farrokh & Jung, Wooyoung, 2018. "Personalized thermal comfort inference using RGB video images for distributed HVAC control," Applied Energy, Elsevier, vol. 220(C), pages 829-841.
    10. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    11. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    12. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    13. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    14. Wenquan Jin & Israr Ullah & Shabir Ahmad & Dohyeun Kim, 2019. "Occupant Comfort Management Based on Energy Optimization Using an Environment Prediction Model in Smart Homes," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    15. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    16. Pia Szichta & Ingela Tietze, 2020. "Sharing Economy in der Elektrizitätswirtschaft: Treiber und Hemmnisse [Title sharing economy in the electricity sector: drivers and barriers]," Sustainability Nexus Forum, Springer, vol. 28(3), pages 109-125, December.
    17. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    18. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    19. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    20. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9187-:d:992986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.