IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1331-d508209.html
   My bibliography  Save this article

Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings

Author

Listed:
  • Hossein Moayedi

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam)

  • Amir Mosavi

    (Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
    School of Economics and Business, Norwegian University of Life Sciences, 1430 Ås, Norway
    John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
    School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

Abstract

A reliable prediction of sustainable energy consumption is key for designing environmentally friendly buildings. In this study, three novel hybrid intelligent methods, namely the grasshopper optimization algorithm (GOA), wind-driven optimization (WDO), and biogeography-based optimization (BBO), are employed to optimize the multitarget prediction of heating loads (HLs) and cooling loads (CLs) in the heating, ventilation and air conditioning (HVAC) systems. Concerning the optimization of the applied algorithms, a series of swarm-based iterations are performed, and the best structure is proposed for each model. The GOA, WDO, and BBO algorithms are mixed with a class of feedforward artificial neural networks (ANNs), which is called a multi-layer perceptron (MLP) to predict the HL and CL. According to the sensitivity analysis, the WDO with swarm size = 500 proposes the most-fitted ANN. The proposed WDO-ANN provided an accurate prediction in terms of heating load (training (R 2 correlation = 0.977 and RMSE error = 0.183) and testing (R 2 correlation = 0.973 and RMSE error = 0.190)) and yielded the best-fitted prediction in terms of cooling load (training (R 2 correlation = 0.99 and RMSE error = 0.147) and testing (R 2 correlation = 0.99 and RMSE error = 0.148)).

Suggested Citation

  • Hossein Moayedi & Amir Mosavi, 2021. "Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1331-:d:508209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min, Yunran & Chen, Yi & Yang, Hongxing, 2019. "A statistical modeling approach on the performance prediction of indirect evaporative cooling energy recovery systems," Applied Energy, Elsevier, vol. 255(C).
    2. Kusiak, Andrew & Li, Mingyang & Zhang, Zijun, 2010. "A data-driven approach for steam load prediction in buildings," Applied Energy, Elsevier, vol. 87(3), pages 925-933, March.
    3. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    4. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    5. Guoqiang Zhu & Sen Wang & Lingfang Sun & Weichun Ge & Xiuyu Zhang, 2020. "Output Feedback Adaptive Dynamic Surface Sliding-Mode Control for Quadrotor UAVs with Tracking Error Constraints," Complexity, Hindawi, vol. 2020, pages 1-23, June.
    6. Chen, Huazhou & Chen, An & Xu, Lili & Xie, Hai & Qiao, Hanli & Lin, Qinyong & Cai, Ken, 2020. "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources," Agricultural Water Management, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Alayi & Mahdi Mohkam & Seyed Reza Seyednouri & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    2. Hossein Moayedi & Bao Le Van, 2022. "Feasibility of Harris Hawks Optimization in Combination with Fuzzy Inference System Predicting Heating Load Energy Inside Buildings," Energies, MDPI, vol. 15(23), pages 1-17, December.
    3. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    4. Łukasz Mazur & Anna Bać & Magdalena Daria Vaverková & Jan Winkler & Aleksandra Nowysz & Eugeniusz Koda, 2022. "Evaluation of the Quality of the Housing Environment Using Multi-Criteria Analysis That Includes Energy Efficiency: A Review," Energies, MDPI, vol. 15(20), pages 1-24, October.
    5. Hou, D. & Evins, R., 2024. "A protocol for developing and evaluating neural network-based surrogate models and its application to building energy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Michał Jasiński & Arsalan Najafi & Tomasz Sikorski & Paweł Kostyła & Jacek Rezmer, 2022. "Operation of an Energy Storage System Integrated with a Photovoltaic System and an Industrial Customer under Different Real and Pseudo-Real Profiles," Energies, MDPI, vol. 15(21), pages 1-27, November.
    7. Yunho Kim & Yunha Park & Hyuncheol Seo & Jungha Hwang, 2023. "Load Prediction Algorithm Applied with Indoor Environment Sensing in University Buildings," Energies, MDPI, vol. 16(2), pages 1-14, January.
    8. Rima Aridi & Jalal Faraj & Samer Ali & Mostafa Gad El-Rab & Thierry Lemenand & Mahmoud Khaled, 2021. "Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations," Energies, MDPI, vol. 14(18), pages 1-31, September.
    9. Habib Kraiem & Aymen Flah & Naoui Mohamed & Mohamed H. B. Messaoud & Essam A. Al-Ammar & Ahmed Althobaiti & Abdullah Alhumaidi Alotaibi & Michał Jasiński & Vishnu Suresh & Zbigniew Leonowicz & Elżbiet, 2022. "Decreasing the Battery Recharge Time if Using a Fuzzy Based Power Management Loop for an Isolated Micro-Grid Farm," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    10. Yang, Yiran & Li, Gang & Luo, Tao & Al-Bahrani, Mohammed & Al-Ammar, Essam A. & Sillanpaa, Mika & Ali, Shafaqat & Leng, Xiujuan, 2023. "The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks," Energy, Elsevier, vol. 268(C).
    11. Loke Kok Foong & Binh Nguyen Le, 2022. "Teaching–Learning–Based Optimization (TLBO) in Hybridized with Fuzzy Inference System Estimating Heating Loads," Energies, MDPI, vol. 15(21), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Hossein Moayedi & Amir Mosavi, 2021. "Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    3. Hossein Moayedi & Amir Mosavi, 2021. "Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    5. Hossein Moayedi & Amir Mosavi, 2021. "Synthesizing Multi-Layer Perceptron Network with Ant Lion Biogeography-Based Dragonfly Algorithm Evolutionary Strategy Invasive Weed and League Champion Optimization Hybrid Algorithms in Predicting He," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    6. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    7. Alaa Saeed & A. A. Abdel-Aziz & Amr Mossad & Mahmoud A. Abdelhamid & Alfadhl Y. Alkhaled & Muhammad Mayhoub, 2023. "Smart Detection of Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-14, January.
    8. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    9. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    10. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    11. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    12. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    13. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    14. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Abdel-Mohsen O. Mohamed & Dina Mohamed & Adham Fayad & Moza T. Al Nahyan, 2024. "Enhancing Decision Making and Decarbonation in Environmental Management: A Review on the Role of Digital Technologies," Sustainability, MDPI, vol. 16(16), pages 1-34, August.
    16. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    17. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    18. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    19. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    20. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Predicting plug loads with occupant count data through a deep learning approach," Energy, Elsevier, vol. 181(C), pages 29-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1331-:d:508209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.