IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4931-d1490921.html
   My bibliography  Save this article

Mechanism and Data-Driven Fusion SOC Estimation

Author

Listed:
  • Aijun Tian

    (Lanzhou Haihong Technology Co., Ltd., Lanzhou 730050, China)

  • Weidong Xue

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Chen Zhou

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yongquan Zhang

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Haiying Dong

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

An accurate assessment of the state of charge (SOC) of electric vehicle batteries is critical for implementing frequency regulation and peak shaving. This study proposes mechanism- and data-driven SOC fusion calculation methods. First, a second-order Thevenin battery model is developed to obtain the physical parameters of the battery. Second, data from the Thevenin battery model and data from four standard cycling conditions in the electric vehicle industry are added to the dataset of the feed-forward neural network data-driven model to construct the test and training sets of the data-driven model. Finally, the error of the mechanism and data-driven fusion modeling method is quantitatively analyzed by comparing the estimation error of the method for the battery SOC at different temperatures with the accuracy of the data-driven SOC estimation method. The simulation results show that the root mean square error, the mean age absolute error, and the maximum error of mechanism and data-driven method for the estimation error of battery SOC are lower than those of the data-driven method by 0.9%, 0.65%, and 1.3%, respectively. The results show that the mechanism and data-driven fusion SOC estimation method has better generalization performance and higher SOC estimation accuracy.

Suggested Citation

  • Aijun Tian & Weidong Xue & Chen Zhou & Yongquan Zhang & Haiying Dong, 2024. "Mechanism and Data-Driven Fusion SOC Estimation," Energies, MDPI, vol. 17(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4931-:d:1490921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Limei & Sun, Jingjing & Cai, Yingfeng & Lian, Yubo & Jin, Mengjie & Zhao, Xiuliang & Wang, Ruochen & Chen, Long & Chen, Jun, 2023. "A novel OCV curve reconstruction and update method of lithium-ion batteries at different temperatures based on cloud data," Energy, Elsevier, vol. 268(C).
    2. Sneha Sundaresan & Bharath Chandra Devabattini & Pradeep Kumar & Krishna R. Pattipati & Balakumar Balasingam, 2022. "Tabular Open Circuit Voltage Modelling of Li-Ion Batteries for Robust SOC Estimation," Energies, MDPI, vol. 15(23), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
    3. Zhang, Jie & Xiao, Bo & Niu, Geng & Xie, Xuanzhi & Wu, Saixiang, 2024. "Joint estimation of state-of-charge and state-of-power for hybrid supercapacitors using fractional-order adaptive unscented Kalman filter," Energy, Elsevier, vol. 294(C).
    4. Lian, Gaoqi & Ye, Min & Wang, Qiao & Li, Yan & Xia, Baozhou & Zhang, Jiale & Xu, Xinxin, 2024. "Robust state-of-charge estimation for LiFePO4 batteries under wide varying temperature environments," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4931-:d:1490921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.