IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9088-d989359.html
   My bibliography  Save this article

Thermal Modeling and Prediction of The Lithium-ion Battery Based on Driving Behavior

Author

Listed:
  • Tingting Wang

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Xin Liu

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Dongchen Qin

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Yuechen Duan

    (School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

Abstract

Real-time monitoring of the battery thermal status is important to ensure the effectiveness of battery thermal management system (BTMS), which can effectively avoid thermal runaway. In the study of BTMS, driver behavior is one of the factors affecting the performance of the battery thermal status, and it is often neglected in battery temperature studies. Therefore, it is necessary to predict the dynamic heat generation of the battery in actual driving cycles. In this work, a thermal equivalent circuit model (TECM) and an artificial neural network (ANN) thermal model based on the driving data, which can predict the thermal behavior of the battery in real-world driving cycles, are proposed and established by MATLAB/Simulink tool. Driving behaviors analysis of different drivers are simulated by PI control as input, and battery temperature is used as output response. The results show that aggressive driving behavior leads to an increase in battery temperature of nearly 1.2 K per second, and the average prediction error of TECM model and ANN model is 0.13 K and 0.11 K, respectively. This indicates that both models can accurately estimate the real-time battery temperature. However, the computational speed of the ANN thermal model is only 0.2 s, which is more efficient for battery thermal management.

Suggested Citation

  • Tingting Wang & Xin Liu & Dongchen Qin & Yuechen Duan, 2022. "Thermal Modeling and Prediction of The Lithium-ion Battery Based on Driving Behavior," Energies, MDPI, vol. 15(23), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9088-:d:989359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Zhongwei & Yang, Lin & Cai, Yishan & Deng, Hao & Sun, Liu, 2016. "Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery," Energy, Elsevier, vol. 112(C), pages 469-480.
    2. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    3. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Fan & Lan Wang & Wei Chen & Bin Liu & Pengxin Wang, 2023. "A J-Type Air-Cooled Battery Thermal Management System Design and Optimization Based on the Electro-Thermal Coupled Model," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    2. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    3. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    4. Feiyu Hou & Fei Yao & Zheng Li, 2022. "A Torque-Compensated Fault-Tolerant Control Method for Electric Vehicle Traction Motor with Short-Circuit Fault," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    5. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    6. Deng, Zhongwei & Deng, Hao & Yang, Lin & Cai, Yishan & Zhao, Xiaowei, 2017. "Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery," Energy, Elsevier, vol. 138(C), pages 509-519.
    7. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    8. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    9. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    10. Pla, Benjamín & Bares, Pau & Aronis, André Nakaema & Anuratha, Sanjith, 2024. "Leveraging battery electric vehicle energy storage potential for home energy saving by model predictive control with backward induction," Applied Energy, Elsevier, vol. 372(C).
    11. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    12. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    13. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    14. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    15. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Theo Lieven & Beatrice Hügler, 2021. "Did Electric Vehicle Sales Skyrocket Due to Increased Environmental Awareness While Total Vehicle Sales Declined during COVID-19?," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    17. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    18. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    19. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    20. Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9088-:d:989359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.