IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp608-619.html
   My bibliography  Save this article

Wind turbines ice distribution and load response under icing conditions

Author

Listed:
  • Hu, Liangquan
  • Zhu, Xiaocheng
  • Hu, Chenxing
  • Chen, Jinge
  • Du, Zhaohui

Abstract

Wind turbines operating in cold climate are susceptible to icing events. Under icing conditions, in order to gain a better understanding of the ice distribution affected by different parameters, and the load response of different components, the NREL Phase VI was selected as the test case. Firstly, the ice distribution affected by different parameters with the multi-dispersed water droplets size was investigated. Results show that the ice mass and the ice thickness increase approximately linear from the blade root to the blade tip. Higher free stream wind speed, smaller pitch angle, higher liquid water content, larger water droplets median volumetric diameter and lower temperature have bigger effect on the blade icing. Secondly, the ice shapes on the blade tip region (r/R = 80%–100%) were simulated. Then the lift coefficients and the drag coefficients of the clean airfoils and the iced airfoils were calculated. Finally, the load response of the asymmetric icing (one blade is covered with ice, the other is free) and the symmetric icing (two blades are covered with ice) of the blade and the tower were analyzed. Results show that icing can decrease the rotor thrust force, the blade root edgewise moment and the blade root flatwise moment. For the low speed shaft, the asymmetric icing can induce additional imbalance shear force. For the tower base, the symmetric icing can decrease the fore after moment, whereas the asymmetric icing can increase the side to side moment. The asymmetric load can increase the blade and the tower fatigue damage up to 97.6% and 70.8%, respectively.

Suggested Citation

  • Hu, Liangquan & Zhu, Xiaocheng & Hu, Chenxing & Chen, Jinge & Du, Zhaohui, 2017. "Wind turbines ice distribution and load response under icing conditions," Renewable Energy, Elsevier, vol. 113(C), pages 608-619.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:608-619
    DOI: 10.1016/j.renene.2017.05.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalili, N. & Edrisy, A. & Carriveau, R., 2009. "A review of surface engineering issues critical to wind turbine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 428-438, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudhakar Gantasala & Narges Tabatabaei & Michel Cervantes & Jan-Olov Aidanpää, 2019. "Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades," Energies, MDPI, vol. 12(12), pages 1-24, June.
    2. Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
    3. Fahed Martini & Hussein Ibrahim & Leidy Tatiana Contreras Montoya & Patrick Rizk & Adrian Ilinca, 2022. "Turbulence Modeling of Iced Wind Turbine Airfoils," Energies, MDPI, vol. 15(22), pages 1-20, November.
    4. Fahed Martini & Adrian Ilinca & Patrick Rizk & Hussein Ibrahim & Mohamad Issa, 2022. "A Survey of the Quasi-3D Modeling of Wind Turbine Icing," Energies, MDPI, vol. 15(23), pages 1-32, November.
    5. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    6. Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, W.Y. & Zhang, W.H. & Han, J.G. & Wang, G.F., 2012. "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, Elsevier, vol. 48(C), pages 411-415.
    2. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    3. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    4. Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
    5. Son, Chankyu & Kelly, Mark & Kim, Taeseong, 2021. "Boundary-layer transition model for icing simulations of rotating wind turbine blades," Renewable Energy, Elsevier, vol. 167(C), pages 172-183.
    6. Alessio Castorrini & Paolo Venturini & Aldo Bonfiglioli, 2022. "Generation of Surface Maps of Erosion Resistance for Wind Turbine Blades under Rain Flows," Energies, MDPI, vol. 15(15), pages 1-14, August.
    7. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Brouwer, Jack & Samuelsen, Scott, 2011. "Spatial and temporal analysis of electric wind generation intermittency and dynamics," Renewable Energy, Elsevier, vol. 36(12), pages 3424-3432.
    8. Fillion, R.M. & Riahi, A.R. & Edrisy, A., 2014. "A review of icing prevention in photovoltaic devices by surface engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 797-809.
    9. Wang, Yibing & Xu, Yuanming & Lei, Yuyong, 2018. "An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades," Renewable Energy, Elsevier, vol. 118(C), pages 1015-1023.
    10. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    11. Upma Singh & Mohammad Rizwan & Hasmat Malik & Fausto Pedro García Márquez, 2022. "Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review," Energies, MDPI, vol. 15(6), pages 1-39, March.
    12. Hussein, Ahmed Kadhim, 2015. "Applications of nanotechnology in renewable energies—A comprehensive overview and understanding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 460-476.
    13. Bakhtiari, Ehsan & Gharali, Kobra & Chini, Farshid & Al-Haq, Armughan & Nathwani, Jatin, 2023. "Slip influence on a blade performance under different pitch-oscillating motion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Bakhtiari, Ehsan, 2019. "Super-hydrophobicity effects on performance of a dynamic wind turbine blade element under yaw loads," Renewable Energy, Elsevier, vol. 140(C), pages 539-551.
    15. Cheng, Xu & Shi, Fan & Liu, Yongping & Liu, Xiufeng & Huang, Lizhen, 2022. "Wind turbine blade icing detection: a federated learning approach," Energy, Elsevier, vol. 254(PC).
    16. S. Pryor & R. Barthelmie, 2013. "Assessing the vulnerability of wind energy to climate change and extreme events," Climatic Change, Springer, vol. 121(1), pages 79-91, November.
    17. Dollinger, Christoph & Balaresque, Nicholas & Gaudern, Nicholas & Gleichauf, Daniel & Sorg, Michael & Fischer, Andreas, 2019. "IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition," Renewable Energy, Elsevier, vol. 138(C), pages 709-721.
    18. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Yan Li & He Shen & Wenfeng Guo, 2021. "Simulation and Experimental Study on the Ultrasonic Micro-Vibration De-Icing Method for Wind Turbine Blades," Energies, MDPI, vol. 14(24), pages 1-15, December.
    20. Zhao, Zhen-yu & Ling, Wen-jun & Zillante, George & Zuo, Jian, 2012. "Comparative assessment of performance of foreign and local wind turbine manufacturers in China," Renewable Energy, Elsevier, vol. 39(1), pages 424-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:608-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.