IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8691-d977708.html
   My bibliography  Save this article

Analysis of the Exhaust Emissions of Hybrid Vehicles for the Current and Future RDE Driving Cycle

Author

Listed:
  • Kinga Skobiej

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland)

  • Jacek Pielecha

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland)

Abstract

Hybrid vehicles account for the largest share of new motor vehicle sales in Europe. These are vehicles that are expected to bridge the technological gap between vehicles with internal combustion engines and electric vehicles. Such a solution also makes it possible to meet the limits of motor vehicle emissions, at a time when it is particularly important to test them under actual traffic conditions. This article analyzes the impact of the length of the test routes in relation to current, but also future regulations of approval standards. Three routes of post-phase composition (urban, rural, motorway) with lengths of about 30, 16 and 8 km were selected for the study. Measurements of the main emission components were made using portable emission measurement systems (PEMS), and exhaust emissions were determined using the moving average window (MAW) method. Analysis of the obtained results led to the conclusion that the current requirements for the RDE test (in particular, the duration of the test) enforce a length of each part of 32 km. Reducing the test to 60–90 min causes the individual phases to last 16 km, and the main advantage of such a solution is the very strong influence of the cold start phase on the emission results in the urban phase. Future declarations by lawmakers to drastically reduce the length of the test phases to 8 km will force hybrid vehicles to be tested largely using the internal combustion engine. This will be the right thing to do, especially in the urban phase, as now in addition to a significant reduction in the engine warm-up phase, manufacturers will have to take into account that such an engine thermal condition can also occur in the rural phase.

Suggested Citation

  • Kinga Skobiej & Jacek Pielecha, 2022. "Analysis of the Exhaust Emissions of Hybrid Vehicles for the Current and Future RDE Driving Cycle," Energies, MDPI, vol. 15(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8691-:d:977708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gloria Pignatta & Navid Balazadeh, 2022. "Hybrid Vehicles as a Transition for Full E-Mobility Achievement in Positive Energy Districts: A Comparative Assessment of Real-Driving Emissions," Energies, MDPI, vol. 15(8), pages 1-18, April.
    2. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    3. Branislav Šarkan & Marek Jaśkiewicz & Przemysław Kubiak & Dariusz Tarnapowicz & Michal Loman, 2022. "Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System," Energies, MDPI, vol. 15(3), pages 1-22, February.
    4. Kazimierz Lejda & Artur Jaworski & Maksymilian Mądziel & Krzysztof Balawender & Adam Ustrzycki & Danylo Savostin-Kosiak, 2021. "Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests," Energies, MDPI, vol. 14(6), pages 1-19, March.
    5. RODRIGUEZ QUINTERO Rocio & VIDAL ABARCA GARRIDO Candela, 2022. "Revision of the EU Green Public Procurement Criteria for Road Transport," JRC Research Reports JRC127043, Joint Research Centre.
    6. Kinga Skobiej & Jacek Pielecha, 2021. "Plug-in Hybrid Ecological Category in Real Driving Emissions," Energies, MDPI, vol. 14(8), pages 1-25, April.
    7. Jacek Pielecha & Kinga Skobiej & Karolina Kurtyka, 2020. "Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles in Real Driving Cycles," Energies, MDPI, vol. 13(23), pages 1-21, December.
    8. Timothy Bodisco & Ali Zare, 2019. "Practicalities and Driving Dynamics of a Real Driving Emissions (RDE) Euro 6 Regulation Homologation Test," Energies, MDPI, vol. 12(12), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    2. Piotr Pryciński & Róża Wawryszczuk & Jarosław Korzeb & Piotr Pielecha, 2023. "Indicator Method for Determining the Emissivity of Road Transport Means from the Point of Supplied Energy," Energies, MDPI, vol. 16(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.
    2. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    3. Slavin Viktor & Shuba Yevheniy & Caban Jacek & Matijosius Jonas & Rimkus Alfredas & Korpach Anatolii & Gutarevych Serhiy, 2022. "The Performance of a Car with Various Engine Power Systems – Part II," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 141-151, January.
    4. Wojciech Gis & Maciej Gis & Jacek Pielecha & Kinga Skobiej, 2021. "Alternative Exhaust Emission Factors from Vehicles in On-Road Driving Tests," Energies, MDPI, vol. 14(12), pages 1-23, June.
    5. Piotr Pryciński & Róża Wawryszczuk & Jarosław Korzeb & Piotr Pielecha, 2023. "Indicator Method for Determining the Emissivity of Road Transport Means from the Point of Supplied Energy," Energies, MDPI, vol. 16(12), pages 1-22, June.
    6. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    7. Sebastian Grzesiak & Adam Sulich, 2022. "Car Engines Comparative Analysis: Sustainable Approach," Energies, MDPI, vol. 15(14), pages 1-15, July.
    8. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    9. Jacek Pielecha & Kinga Skobiej & Maciej Gis & Wojciech Gis, 2022. "Particle Number Emission from Vehicles of Various Drives in the RDE Tests," Energies, MDPI, vol. 15(17), pages 1-20, September.
    10. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    11. Gloria Pignatta & Navid Balazadeh, 2022. "Hybrid Vehicles as a Transition for Full E-Mobility Achievement in Positive Energy Districts: A Comparative Assessment of Real-Driving Emissions," Energies, MDPI, vol. 15(8), pages 1-18, April.
    12. Veronika Harantová & Ambróz Hájnik & Alica Kalašová & Tomasz Figlus, 2022. "The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    13. Branislav Šarkan & Marek Jaśkiewicz & Przemysław Kubiak & Dariusz Tarnapowicz & Michal Loman, 2022. "Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System," Energies, MDPI, vol. 15(3), pages 1-22, February.
    14. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    15. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    16. Sascha Krysmon & Frank Dorscheidt & Johannes Claßen & Marc Düzgün & Stefan Pischinger, 2021. "Real Driving Emissions—Conception of a Data-Driven Calibration Methodology for Hybrid Powertrains Combining Statistical Analysis and Virtual Calibration Platforms," Energies, MDPI, vol. 14(16), pages 1-27, August.
    17. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    18. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    19. Mera, Zamir & Varella, Roberto & Baptista, Patrícia & Duarte, Gonçalo & Rosero, Fredy, 2022. "Including engine data for energy and pollutants assessment into the vehicle specific power methodology," Applied Energy, Elsevier, vol. 311(C).
    20. Norbert Zsiga & Johannes Ritzmann & Patrik Soltic, 2021. "Practical Aspects of Cylinder Deactivation and Reactivation," Energies, MDPI, vol. 14(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8691-:d:977708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.