IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8648-d976431.html
   My bibliography  Save this article

Battery Electric Tractors: Small-Scale Organic Growers’ Preferences, Perceptions, and Concerns

Author

Listed:
  • Douglas L. Bessette

    (Department of Community Sustainability, Michigan State University, East Lansing, MI 48843, USA)

  • Daniel C. Brainard

    (Department of Horticulture, Michigan State University, East Lansing, MI 48843, USA)

  • Ajit K. Srivastava

    (Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48843, USA)

  • Woongkul Lee

    (Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48843, USA)

  • Sarah Geurkink

    (Student Organic Farm, Michigan State University, East Lansing, MI 48843, USA)

Abstract

Battery electric tractors (BETs) demonstrate considerable advantages over diesel-fueled tractors, including higher conversion efficiency, higher torque, less maintenance, and no tailpipe emissions. Converting to BETs also requires tradeoffs in the form of the batteries’ high cost, increased weight, limited energy capacity, finite charging cycles, and lengthy charging time. The extent to which small-scale organic vegetable, fruit and cut-flower growers are aware of these tradeoffs is unknown. Little research exists examining these growers’ perceptions, concerns, and willingness to pay for or adopt BETs. Here, we address that gap by conducting qualitative semi-structured interviews with 14 organic growers in the US Midwest, most operating in Michigan. We focus our questions on growers’ motivations, existing tractor-use patterns, and the evaluation of different configurations of a belly-mount open-station cultivating BET. Our results suggest interest in and potential for growers to transition to BETs, including an estimated willingness to pay 14 percent more for a BET compared to a diesel-fueled alternative. This premium is driven by most growers’ preferences for reduced noise, fumes, fuel, and greenhouse gases, as well as beliefs about BETs ultimately being a more sustainable long-term option than diesel-fueled tractors. Growers also identify significant concerns and uncertainty about the long-term performance, maintenance, storage, cost, safety, and weight of the tractors’ battery systems. While growers linked some environmental values and motivations to their interest in BETs, altruistic value signaling was absent, and growers focused considerably more on financial and instrumental concerns and motivations for BET adoption.

Suggested Citation

  • Douglas L. Bessette & Daniel C. Brainard & Ajit K. Srivastava & Woongkul Lee & Sarah Geurkink, 2022. "Battery Electric Tractors: Small-Scale Organic Growers’ Preferences, Perceptions, and Concerns," Energies, MDPI, vol. 15(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8648-:d:976431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    3. Maammeur, H. & Hamidat, A. & Loukarfi, L. & Missoum, M. & Abdeladim, K. & Nacer, T., 2017. "Performance investigation of grid-connected PV systems for family farms: case study of North-West of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1208-1220.
    4. Sarah Zwickle & Robyn Wilson & Doug Doohan, 2014. "Identifying the challenges of promoting ecological weed management (EWM) in organic agroecosystems through the lens of behavioral decision making," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(3), pages 355-370, September.
    5. Langemeier, Michael, 2022. "Trends in General Inflation and Farm Input Prices," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 12(56), April.
    6. Franke, Thomas & Krems, Josef F., 2013. "Interacting with limited mobility resources: Psychological range levels in electric vehicle use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 109-122.
    7. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    8. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Caban & Jarosław Seńko & Piotr Ignaciuk, 2024. "Laboratory Tests of Electrical Parameters of the Start-Up Process of Single-Cylinder Diesel Engines," Energies, MDPI, vol. 17(9), pages 1-15, April.
    2. Michels, Marius & Bonke, Vanessa & Wever, Hendrik & Musshoff, Oliver, 2024. "Understanding farmers' intention to buy alternative fuel tractors in German agriculture applying the Unified Theory of Acceptance and Use of Technology," Technological Forecasting and Social Change, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    2. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Italian youngsters' perceptions of alternative fuel vehicles: A fuzzy-set approach," Journal of Business Research, Elsevier, vol. 69(11), pages 5426-5430.
    3. Adnan, Nadia & Nordin, Shahrina Md & Rahman, Imran & Rasli, Amran Md, 2017. "A new era of sustainable transport: An experimental examination on forecasting adoption behavior of EVs among Malaysian consumer," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 279-295.
    4. Adnan, Nadia & Md Nordin, Shahrina & Hadi Amini, M. & Langove, Naseebullah, 2018. "What make consumer sign up to PHEVs? Predicting Malaysian consumer behavior in adoption of PHEVs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 259-278.
    5. Wolf, Ingo & Schröder, Tobias & Neumann, Jochen & de Haan, Gerhard, 2015. "Changing minds about electric cars: An empirically grounded agent-based modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 269-285.
    6. Junquera, Beatriz & Moreno, Blanca & Álvarez, Roberto, 2016. "Analyzing consumer attitudes towards electric vehicle purchasing intentions in Spain: Technological limitations and vehicle confidence," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 6-14.
    7. Adnan, Nadia & Nordin, Shahrina Md & Rahman, Imran, 2017. "Adoption of PHEV/EV in Malaysia: A critical review on predicting consumer behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 849-862.
    8. Peng Cheng & Zhe Ouyang & Yang Liu, 0. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 0, pages 1-20.
    9. Bireswar Dutta & Hsin-Ginn Hwang, 2021. "Consumers Purchase Intentions of Green Electric Vehicles: The Influence of Consumers Technological and Environmental Considerations," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    10. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    12. Peng Cheng & Zhe Ouyang & Yang Liu, 2020. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 47(5), pages 2067-2086, October.
    13. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    14. Sun, Ka Kit & He, Sylvia Y. & Thøgersen, John, 2022. "The purchase intention of electric vehicles in Hong Kong, a high-density Asian context, and main differences from a Nordic context," Transport Policy, Elsevier, vol. 128(C), pages 98-112.
    15. Shanmugavel, Nagarajan & Balakrishnan, Janarthanan, 2023. "Influence of pro-environmental behaviour towards behavioural intention of electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    16. Simone Wurster & Rita Schulze, 2020. "Consumers’ Acceptance of a Bio-circular Automotive Economy: Explanatory Model and Influence Factors," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    17. Qingyou Yan & Guangyu Qin & Meijuan Zhang & Bowen Xiao, 2019. "Research on Real Purchasing Behavior Analysis of Electric Cars in Beijing Based on Structural Equation Modeling and Multinomial Logit Model," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    18. Han, Liu & Wang, Shanyong & Zhao, Dingtao & Li, Jun, 2017. "The intention to adopt electric vehicles: Driven by functional and non-functional values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 185-197.
    19. Mohamed, Moataz & Higgins, Chris & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Identifying and characterizing potential electric vehicle adopters in Canada: A two-stage modelling approach," Transport Policy, Elsevier, vol. 52(C), pages 100-112.
    20. Featherman, Mauricio & Jia, Shizhen (Jasper) & Califf, Christopher B. & Hajli, Nick, 2021. "The impact of new technologies on consumers beliefs: Reducing the perceived risks of electric vehicle adoption," Technological Forecasting and Social Change, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8648-:d:976431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.