IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8436-d969735.html
   My bibliography  Save this article

Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data

Author

Listed:
  • Mehmet Balcilar

    (Department of Economics, Eastern Mediterranean University, Turkish Republic of North Cyprus, Via Mersin 10, Famagusta 99628, Turkey
    Department of Economics, OSTIM Technical University, Ankara 06374, Turkey)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany)

Abstract

We investigate whether oil-price uncertainty helps forecast the international stock returns of ten advanced and emerging countries. We consider an out-of-sample period of August 1925 to September 2021, with an in-sample period between August 1920 and July 1925, and employ a quantile-predictive-regression approach, which is more informative relative to a linear model, as it investigates the ability of oil-price uncertainty to forecast the entire conditional distribution of stock returns Based on a recursive estimation scheme, we draw the following main conclusions: the quantile-predictive-regression approach using oil-price uncertainty as a predictor statistically outperforms the corresponding quantile-based constant-mean model for all ten countries at certain quantiles (capturing normal, bear, and bull markets), and over specific forecast horizons, compared to forecastability being detected for eight countries under the linear predictive model. Importantly, we detect forecasting gains in many more horizons (at particular quantiles) compared to the linear case. In addition, an oil-price uncertainty-based state-contingent spillover analysis reveals that the ten equity markets are connected more tightly at the upper regime, suggesting that heightened oil-market volatility erodes the benefits from diversification across equity markets.

Suggested Citation

  • Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8436-:d:969735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8436/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    2. Christou, Christina & Gupta, Rangan & Jawadi, Fredj, 2021. "Does inequality help in forecasting equity premium in a panel of G7 countries?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    4. Gupta, Rangan & Pierdzioch, Christian & Vivian, Andrew J. & Wohar, Mark E., 2019. "The predictive value of inequality measures for stock returns: An analysis of long-span UK data using quantile random forests," Finance Research Letters, Elsevier, vol. 29(C), pages 315-322.
    5. Demirer, Rıza & Jategaonkar, Shrikant P. & Khalifa, Ahmed A.A., 2015. "Oil price risk exposure and the cross-section of stock returns: The case of net exporting countries," Energy Economics, Elsevier, vol. 49(C), pages 132-140.
    6. Alsalman, Zeina, 2016. "Oil price uncertainty and the U.S. stock market analysis based on a GARCH-in-mean VAR model," Energy Economics, Elsevier, vol. 59(C), pages 251-260.
    7. Diaz, Elena Maria & Molero, Juan Carlos & Perez de Gracia, Fernando, 2016. "Oil price volatility and stock returns in the G7 economies," Energy Economics, Elsevier, vol. 54(C), pages 417-430.
    8. Balcilar, Mehmet & Roubaud, David & Usman, Ojonugwa & Wohar, Mark E., 2021. "Moving out of the linear rut: A period-specific and regime-dependent exchange rate and oil price pass-through in the BRICS countries," Energy Economics, Elsevier, vol. 98(C).
    9. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    10. Demirer, Riza & Pierdzioch, Christian & Zhang, Huacheng, 2017. "On the short-term predictability of stock returns: A quantile boosting approach," Finance Research Letters, Elsevier, vol. 22(C), pages 35-41.
    11. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    12. Jiranyakul, Komain, 2014. "Does oil price uncertainty transmit to the Thai stock market?," MPRA Paper 57350, University Library of Munich, Germany.
    13. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Fed’s unconventional monetary policy and risk spillover in the US financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 78(C), pages 42-52.
    14. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    15. Basher, Syed A. & Sadorsky, Perry, 2006. "Oil price risk and emerging stock markets," Global Finance Journal, Elsevier, vol. 17(2), pages 224-251, December.
    16. Afees A. Salisu & Rangan Gupta & Riza Demirer, 2022. "Oil Price Uncertainty Shocks and Global Equity Markets: Evidence from a GVAR Model," JRFM, MDPI, vol. 15(8), pages 1-26, August.
    17. Steven J. Jordan & Andrew Vivian & Mark E. Wohar, 2018. "Stock returns forecasting with metals: sentiment vs. fundamentals," The European Journal of Finance, Taylor & Francis Journals, vol. 24(6), pages 458-477, April.
    18. Gupta, Rangan & Mwamba, John W. Muteba & Wohar, Mark E., 2018. "The role of partisan conflict in forecasting the U.S. equity premium: A nonparametric approach," Finance Research Letters, Elsevier, vol. 25(C), pages 131-136.
    19. Rangan Gupta & Anandamayee Majumdar & Mark E. Wohar, 2017. "The Role of Current Account Balance in Forecasting the US Equity Premium: Evidence From a Quantile Predictive Regression Approach," Open Economies Review, Springer, vol. 28(1), pages 47-59, February.
    20. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    21. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    22. Mehmet Balcilar & David Roubaud & Ojonugwa Usman & Mark E. Wohar, 2021. "Testing the asymmetric effects of exchange rate pass‐through in BRICS countries: Does the state of the economy matter?," The World Economy, Wiley Blackwell, vol. 44(1), pages 188-233, January.
    23. Afees A. Salisu & Rangan Gupta, 2022. "Commodity Prices and Forecastability of International Stock Returns over a Century: Sentiments versus Fundamentals with Focus on South Africa," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 58(9), pages 2620-2636, July.
    24. John Y. Campbell, 2007. "Estimating the Equity Premium," NBER Working Papers 13423, National Bureau of Economic Research, Inc.
    25. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    26. Bekiros, Stelios & Gupta, Rangan & Majumdar, Anandamayee, 2016. "Incorporating economic policy uncertainty in US equity premium models: A nonlinear predictability analysis," Finance Research Letters, Elsevier, vol. 18(C), pages 291-296.
    27. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    28. Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
    29. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2021. "Geopolitical risk and forecastability of tail risk in the oil market: Evidence from over a century of monthly data," Energy, Elsevier, vol. 235(C).
    30. Tiwari, Aviral Kumar & Cunado, Juncal & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility spillovers across global asset classes: Evidence from time and frequency domains," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 194-202.
    31. Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Energy Economics, Elsevier, vol. 48(C), pages 18-23.
    32. Masih, Rumi & Peters, Sanjay & De Mello, Lurion, 2011. "Oil price volatility and stock price fluctuations in an emerging market: Evidence from South Korea," Energy Economics, Elsevier, vol. 33(5), pages 975-986, September.
    33. Komain Jiranyakul, 2014. "Does oil price uncertainty transmit to the Thai stock market?," Journal of Economic and Financial Studies (JEFS), LAR Center Press, vol. 2(6), pages 16-25, December.
    34. Gupta, Rangan & Huber, Florian & Piribauer, Philipp, 2020. "Predicting international equity returns: Evidence from time-varying parameter vector autoregressive models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    35. Christian Pierdzioch & Marian Risse & Sebastian Rohloff, 2016. "Fluctuations of the real exchange rate, real interest rates, and the dynamics of the price of gold in a small open economy," Empirical Economics, Springer, vol. 51(4), pages 1481-1499, December.
    36. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    37. Mehmet Balcilar & Zeynel Abidin Ozdemir & Huseyin Ozdemir & Gurcan Aygun & Mark E. Wohar, 2022. "Effectiveness of monetary policy under the high and low economic uncertainty states: evidence from the major Asian economies," Empirical Economics, Springer, vol. 63(4), pages 1741-1769, October.
    38. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    39. Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2014. "A Quantile Regression Approach to Equity Premium Prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 558-576, November.
    40. Christoffersen, Peter & Pan, Xuhui (Nick), 2018. "Oil volatility risk and expected stock returns," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 5-26.
    41. Jiranyakul, Komain, 2014. "Does oil price uncertainty transmit to the Thai stock market?," MPRA Paper 57262, University Library of Munich, Germany.
    42. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    43. Swaray, Raymond & Salisu, Afees A., 2018. "A firm-level analysis of the upstream-downstream dichotomy in the oil-stock nexus," Global Finance Journal, Elsevier, vol. 37(C), pages 199-218.
    44. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    45. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    46. Syed Jawad Hussain Shahzad & Elie Bouri & Sang Hoon Kang & Tareq Saeed, 2021. "Regime specific spillover across cryptocurrencies and the role of COVID-19," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    47. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    48. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    49. Smyth, Russell & Narayan, Paresh Kumar, 2018. "What do we know about oil prices and stock returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 148-156.
    50. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    51. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    52. Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "The Effect of Oil Price Uncertainty Shock on International Equity Markets: Evidence from a GVAR Model," Working Papers 202160, University of Pretoria, Department of Economics.
    53. Sajjadur Rahman, 2021. "Oil price volatility and the US stock market," Empirical Economics, Springer, vol. 61(3), pages 1461-1489, September.
    54. Sohag, Kazi & Hammoudeh, Shawkat & Elsayed, Ahmed H. & Mariev, Oleg & Safonova, Yulia, 2022. "Do geopolitical events transmit opportunity or threat to green markets? Decomposed measures of geopolitical risks," Energy Economics, Elsevier, vol. 111(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024. "Stock market bubbles and the realized volatility of oil price returns," Energy Economics, Elsevier, vol. 132(C).
    2. Renee van Eyden & Rangan Gupta & Xin Sheng & Joshua Nielsen, 2023. "Predicting Multi-Scale Positive and Negative Stock Market Bubbles in a Panel of G7 Countries: The Role of Oil Price Uncertainty," Working Papers 202332, University of Pretoria, Department of Economics.
    3. Afees A. Salisu & Rangan Gupta, 2023. "Oil Price Returns Skewness and Forecastability of International Stock Returns Over One Century of Data," Working Papers 202339, University of Pretoria, Department of Economics.
    4. Afees A. Salisu & Ahamuefula E.Oghonna & Rangan Gupta & Oguzhan Cepni, 2024. "Energy Market Uncertainties and US State-Level Stock Market Volatility: A GARCH-MIDAS Approach," Working Papers 202409, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    2. Afees A. Salisu & Rangan Gupta, 2021. "Commodity Prices and Forecastability of South African Stock Returns Over a Century: Sentiments versus Fundamentals," Working Papers 202144, University of Pretoria, Department of Economics.
    3. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2023. "Tail risks and forecastability of stock returns of advanced economies: evidence from centuries of data," The European Journal of Finance, Taylor & Francis Journals, vol. 29(4), pages 466-481, March.
    4. Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "The Effect of Oil Price Uncertainty Shock on International Equity Markets: Evidence from a GVAR Model," Working Papers 202160, University of Pretoria, Department of Economics.
    5. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    6. Renee van Eyden & Rangan Gupta & Xin Sheng & Joshua Nielsen, 2023. "Predicting Multi-Scale Positive and Negative Stock Market Bubbles in a Panel of G7 Countries: The Role of Oil Price Uncertainty," Working Papers 202332, University of Pretoria, Department of Economics.
    7. Oguzhan Cepni & Rangan Gupta & Qiang Ji, 2023. "Sentiment Regimes and Reaction of Stock Markets to Conventional and Unconventional Monetary Policies: Evidence from OECD Countries," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 24(3), pages 365-381, July.
    8. Rangan Gupta & Anandamayee Majumdar & Mark E. Wohar, 2017. "The Role of Current Account Balance in Forecasting the US Equity Premium: Evidence From a Quantile Predictive Regression Approach," Open Economies Review, Springer, vol. 28(1), pages 47-59, February.
    9. Afees A. Salisu & Rangan Gupta & Riza Demirer, 2022. "Oil Price Uncertainty Shocks and Global Equity Markets: Evidence from a GVAR Model," JRFM, MDPI, vol. 15(8), pages 1-26, August.
    10. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    11. Gupta, Rangan & Mwamba, John W. Muteba & Wohar, Mark E., 2018. "The role of partisan conflict in forecasting the U.S. equity premium: A nonparametric approach," Finance Research Letters, Elsevier, vol. 25(C), pages 131-136.
    12. Christou, Christina & Gupta, Rangan & Jawadi, Fredj, 2021. "Does inequality help in forecasting equity premium in a panel of G7 countries?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    13. Plakandaras, Vasilios & Gupta, Rangan & Wong, Wing-Keung, 2019. "Point and density forecasts of oil returns: The role of geopolitical risks," Resources Policy, Elsevier, vol. 62(C), pages 580-587.
    14. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
    15. Christou, Christina & Gupta, Rangan, 2020. "Forecasting equity premium in a panel of OECD countries: The role of economic policy uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 243-248.
    16. Nonejad, Nima, 2018. "Déjà vol oil? Predicting S&P 500 equity premium using crude oil price volatility: Evidence from old and recent time-series data," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 260-270.
    17. Rangan Gupta & Patrick Kanda & Mark E. Wohar, 2021. "Predicting Stock Market Movements in the United States: The Role of Presidential Approval Ratings," International Review of Finance, International Review of Finance Ltd., vol. 21(1), pages 324-335, March.
    18. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2021. "Geopolitical risk and forecastability of tail risk in the oil market: Evidence from over a century of monthly data," Energy, Elsevier, vol. 235(C).
    19. Gupta, Rangan & Huber, Florian & Piribauer, Philipp, 2020. "Predicting international equity returns: Evidence from time-varying parameter vector autoregressive models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    20. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan & Gabauer, David, 2022. "Forecasting stock-market tail risk and connectedness in advanced economies over a century: The role of gold-to-silver and gold-to-platinum price ratios," International Review of Financial Analysis, Elsevier, vol. 83(C).

    More about this item

    Keywords

    international stock markets; oil price uncertainty; forecasting; quantile regression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8436-:d:969735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.