IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v29y2019icp315-322.html
   My bibliography  Save this article

The predictive value of inequality measures for stock returns: An analysis of long-span UK data using quantile random forests

Author

Listed:
  • Gupta, Rangan
  • Pierdzioch, Christian
  • Vivian, Andrew J.
  • Wohar, Mark E.

Abstract

We contribute to research on the predictability of stock returns in two ways. First, we use quantile random forests to study the predictive value of various consumption-based and income-based inequality measures across the quantiles of the conditional distribution of stock returns. Second, we examine whether the inequality measures, measured at a quarterly frequency, have out-of-sample predictive value for stock returns at three different forecast horizons. Our results suggest that the inequality measures have predictive value for stock returns in sample, but do not systematically predict stock returns out of sample.

Suggested Citation

  • Gupta, Rangan & Pierdzioch, Christian & Vivian, Andrew J. & Wohar, Mark E., 2019. "The predictive value of inequality measures for stock returns: An analysis of long-span UK data using quantile random forests," Finance Research Letters, Elsevier, vol. 29(C), pages 315-322.
  • Handle: RePEc:eee:finlet:v:29:y:2019:i:c:p:315-322
    DOI: 10.1016/j.frl.2018.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612318300928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2018.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Constantinides, George M & Duffie, Darrell, 1996. "Asset Pricing with Heterogeneous Consumers," Journal of Political Economy, University of Chicago Press, vol. 104(2), pages 219-240, April.
    3. Mumtaz, Haroon & Theophilopoulou, Angeliki, 2017. "The impact of monetary policy on inequality in the UK. An empirical analysis," European Economic Review, Elsevier, vol. 98(C), pages 410-423.
    4. Christou, Christina & Gupta, Rangan & Jawadi, Fredj, 2021. "Does inequality help in forecasting equity premium in a panel of G7 countries?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    5. Alesina, Alberto & Perotti, Roberto, 1996. "Income distribution, political instability, and investment," European Economic Review, Elsevier, vol. 40(6), pages 1203-1228, June.
    6. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    7. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    8. Pástor, Ľuboš & Veronesi, Pietro, 2013. "Political uncertainty and risk premia," Journal of Financial Economics, Elsevier, vol. 110(3), pages 520-545.
    9. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
    10. Thomas Piketty & Emmanuel Saez, 2014. "Inequality in the long run," Post-Print halshs-01053609, HAL.
    11. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    12. repec:bla:jfinan:v:59:y:2004:i:6:p:2959-3004 is not listed on IDEAS
    13. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    14. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    15. Christian Gollier, 2001. "Wealth Inequality and Asset Pricing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(1), pages 181-203.
    16. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    17. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    18. Mumtaz, Haroon & Theophilopoulou, Angeliki, 2017. "The impact of monetary policy on inequality in the UK. An empirical analysis," European Economic Review, Elsevier, vol. 98(C), pages 410-423.
    19. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    20. Christoph Behrens & Christian Pierdzioch & Marian Risse, 2018. "A test of the joint efficiency of macroeconomic forecasts using multivariate random forests," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 560-572, August.
    21. Johnson, Timothy C., 2012. "Inequality risk premia," Journal of Monetary Economics, Elsevier, vol. 59(6), pages 565-580.
    22. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    23. Persson, Torsten & Tabellini, Guido, 1994. "Is Inequality Harmful for Growth?," American Economic Review, American Economic Association, vol. 84(3), pages 600-621, June.
    24. M. Max Croce & Howard Kung & Thien T. Nguyen & Lukas Schmid, 2012. "Fiscal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2635-2672.
    25. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    26. repec:hal:pseose:halshs-01053609 is not listed on IDEAS
    27. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    28. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    29. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    30. Sousa, Ricardo M. & Vivian, Andrew & Wohar, Mark E., 2016. "Predicting asset returns in the BRICS: The role of macroeconomic and fundamental predictors," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 122-143.
    31. Thien Nguyen & Lukas Schmid & Howard Kung & Mariano Croce, 2012. "Fiscal Policies and Asset Prices," 2012 Meeting Papers 565, Society for Economic Dynamics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2023. "Drivers of Realized Volatility for Emerging Countries with a Focus on South Africa: Fundamentals versus Sentiment," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    2. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.
    3. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    4. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta, 2019. "Does inequality really matter in forecasting real housing returns of the United Kingdom?," International Economics, CEPII research center, issue 159, pages 18-25.
    5. Chia-Cheng Chen & Chun-Hung Chen & Ting-Yin Liu, 2020. "Investment Performance of Machine Learning: Analysis of S&P 500 Index," International Journal of Economics and Financial Issues, Econjournals, vol. 10(1), pages 59-66.
    6. Fazlollah Soleymani & Houman Masnavi & Stanford Shateyi, 2020. "Classifying a Lending Portfolio of Loans with Dynamic Updates via a Machine Learning Technique," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
    7. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    8. Taussig, Roi D., 2021. "Competition risk and expected stock returns," Finance Research Letters, Elsevier, vol. 41(C).
    9. Afees A. Salisu & Rangan Gupta, 2021. "Commodity Prices and Forecastability of South African Stock Returns Over a Century: Sentiments versus Fundamentals," Working Papers 202144, University of Pretoria, Department of Economics.
    10. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta & Riza Demirer, 2022. "Forecasting stock market (realized) volatility in the United Kingdom: Is there a role of inequality?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2146-2152, April.
    11. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    12. Chin-Sheng Huang & Yi-Sheng Liu, 2019. "Machine Learning on Stock Price Movement Forecast: The Sample of the Taiwan Stock Exchange," International Journal of Economics and Financial Issues, Econjournals, vol. 9(2), pages 189-201.
    13. Chia-Cheng Chen & Yisheng Liu & Ting-Hsin Hsu, 2019. "An Analysis on Investment Performance of Machine Learning: An Empirical Examination on Taiwan Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christou, Christina & Gupta, Rangan & Jawadi, Fredj, 2021. "Does inequality help in forecasting equity premium in a panel of G7 countries?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Pástor, Lˇuboš & Veronesi, Pietro, 2016. "Income inequality and asset prices under redistributive taxation," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 1-20.
    3. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.
    4. Oguzhan Cepni & Rangan Gupta & Qiang Ji, 2023. "Sentiment Regimes and Reaction of Stock Markets to Conventional and Unconventional Monetary Policies: Evidence from OECD Countries," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 24(3), pages 365-381, July.
    5. Afees A. Salisu & Rangan Gupta, 2021. "Commodity Prices and Forecastability of South African Stock Returns Over a Century: Sentiments versus Fundamentals," Working Papers 202144, University of Pretoria, Department of Economics.
    6. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2023. "Tail risks and forecastability of stock returns of advanced economies: evidence from centuries of data," The European Journal of Finance, Taylor & Francis Journals, vol. 29(4), pages 466-481, March.
    7. Demirer, Riza & Pierdzioch, Christian & Zhang, Huacheng, 2017. "On the short-term predictability of stock returns: A quantile boosting approach," Finance Research Letters, Elsevier, vol. 22(C), pages 35-41.
    8. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    9. Croce, M.M. & Nguyen, Thien T. & Raymond, S. & Schmid, L., 2019. "Government debt and the returns to innovation," Journal of Financial Economics, Elsevier, vol. 132(3), pages 205-225.
    10. Nicholas Apergis & Matteo Bonato & Rangan Gupta & Clement Kyei, 2016. "Does Geopolitical Risks Predict Stock Returns and Volatility of Leading Defense Companies? Evidence from a Nonparametric Approach," Working Papers 201671, University of Pretoria, Department of Economics.
    11. Huang, Yisu & Ma, Feng & Bouri, Elie & Huang, Dengshi, 2023. "A comprehensive investigation on the predictive power of economic policy uncertainty from non-U.S. countries for U.S. stock market returns," International Review of Financial Analysis, Elsevier, vol. 87(C).
    12. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    13. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    14. Schmid, Lukas & Croce, Mariano & Raymond, Steve & Nguyen, Thiên Tung, 2018. "Government Debt and the Returns to Innovation," CEPR Discussion Papers 12617, C.E.P.R. Discussion Papers.
    15. Christou, Christina & Gupta, Rangan, 2020. "Forecasting equity premium in a panel of OECD countries: The role of economic policy uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 243-248.
    16. Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020. "Equity premium prediction and the state of the economy," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
    17. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    18. Gupta, Rangan & Huber, Florian & Piribauer, Philipp, 2020. "Predicting international equity returns: Evidence from time-varying parameter vector autoregressive models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    19. Cenedese, Gino & Mallucci, Enrico, 2016. "What moves international stock and bond markets?," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 94-113.
    20. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.

    More about this item

    Keywords

    Stock returns; Predictability; Inequality measures; Quantile random forests;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:29:y:2019:i:c:p:315-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.