Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.03.046
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
- Corgnale, Claudio & Hardy, Bruce & Chahine, Richard & Cossement, Daniel, 2018. "Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems," Applied Energy, Elsevier, vol. 213(C), pages 426-434.
- Romaní, Joaquim & Gasia, Jaume & Solé, Aran & Takasu, Hiroki & Kato, Yukitaka & Cabeza, Luisa F., 2019. "Evaluation of energy density as performance indicator for thermal energy storage at material and system levels," Applied Energy, Elsevier, vol. 235(C), pages 954-962.
- Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
- Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
- Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
- Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
- Corgnale, Claudio & Hardy, Bruce & Motyka, Theodore & Zidan, Ragaiy & Teprovich, Joseph & Peters, Brent, 2014. "Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 821-833.
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Lappalainen, Jari & Hakkarainen, Elina & Sihvonen, Teemu & Rodríguez-García, Margarita M. & Alopaeus, Ville, 2019. "Modelling a molten salt thermal energy system – A validation study," Applied Energy, Elsevier, vol. 233, pages 126-145.
- Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
- Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bhogilla, Satya Sekhar, 2021. "Numerical simulation of metal hydride based thermal energy storage system for concentrating solar power plants," Renewable Energy, Elsevier, vol. 172(C), pages 1013-1020.
- Bruce J. Hardy & Claudio Corgnale & Stephanie N. Gamble, 2021. "Operating Characteristics of Metal Hydride-Based Solar Energy Storage Systems," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
- Kant, K. & Pitchumani, R., 2022. "Advances and opportunities in thermochemical heat storage systems for buildings applications," Applied Energy, Elsevier, vol. 321(C).
- Shi, Tao & Xu, Huijin, 2022. "Integration of hydrogen storage and heat storage in thermochemical reactors enhanced with optimized topological structures: Charging process," Applied Energy, Elsevier, vol. 327(C).
- Wu, Zhen & Zhu, Pengfei & Yao, Jing & Tan, Peng & Xu, Haoran & Chen, Bin & Yang, Fusheng & Zhang, Zaoxiao & Ni, Meng, 2020. "Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation," Energy, Elsevier, vol. 192(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ayub, Iqra & Nasir, Muhammad Salman & Liu, Yang & Munir, Anjum & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Performance improvement of solar bakery unit by integrating with metal hydride based solar thermal energy storage reactor," Renewable Energy, Elsevier, vol. 161(C), pages 1011-1024.
- Meroueh, Laureen & Yenduru, Karthik & Dasgupta, Arindam & Jiang, Duo & AuYeung, Nick, 2019. "Energy storage based on SrCO3 and Sorbents—A probabilistic analysis towards realizing solar thermochemical power plants," Renewable Energy, Elsevier, vol. 133(C), pages 770-786.
- Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
- Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
- Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
- Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
- Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
- Zhang, Heng & Liu, Shuli & Shukla, Ashish & Zou, Yuliang & Han, Xiaojing & Shen, Yongliang & Yang, Liu & Zhang, Pengwei & Kusakana, Kanzumba, 2022. "Thermal performance study of thermochemical reactor using net-packed method," Renewable Energy, Elsevier, vol. 182(C), pages 483-493.
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
- Filali Baba, Yousra & Al Mers, Ahmed & Ajdad, Hamid, 2020. "Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization," Renewable Energy, Elsevier, vol. 153(C), pages 440-455.
- Al-Azawii, Mohammad M.S. & Theade, Carter & Bueno, Pablo & Anderson, Ryan, 2019. "Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections," Applied Energy, Elsevier, vol. 249(C), pages 409-422.
- Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
- Lizarraga-Garcia, Enrique & Mitsos, Alexander, 2014. "Effect of heat transfer structures on thermoeconomic performance of solid thermal storage," Energy, Elsevier, vol. 68(C), pages 896-909.
- Parida, Dipti Ranjan & Advaith, S. & Dani, Nikhil & Basu, Saptarshi, 2022. "Assessing the impact of a novel hemispherical diffuser on a single-tank sensible thermal energy storage system," Renewable Energy, Elsevier, vol. 183(C), pages 202-218.
- Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
- Nahhas, Tamar & Py, Xavier & Sadiki, Najim, 2019. "Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 226-235.
- Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2017. "Influence of the heat transfer fluid in a CSP plant molten salts charging process," Renewable Energy, Elsevier, vol. 113(C), pages 148-158.
- Jin, K. & Barde, A. & Nithyanandam, K. & Wirz, R.E., 2019. "Sulfur heat transfer behavior in vertically-oriented isochoric thermal energy storage systems," Applied Energy, Elsevier, vol. 240(C), pages 870-881.
More about this item
Keywords
Techno-economic analysis; Thermal energy storage; Metal hydride; Energy consumption; Life cycle economic analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:148-156. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.