IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8103-d959028.html
   My bibliography  Save this article

The Balance and Optimization Model of Coal Supply in the Flow Representation of Domestic Production and Imports: The Ukrainian Case Study

Author

Listed:
  • Tetiana Bilan

    (Department of the Optimization of the Fuel Bases Development, Institute of General Energy of NAS of Ukraine, 03150 Kyiv, Ukraine)

  • Mykola Kaplin

    (Department of the Optimization of the Fuel Bases Development, Institute of General Energy of NAS of Ukraine, 03150 Kyiv, Ukraine)

  • Vitaliy Makarov

    (Department of the Optimization of the Fuel Bases Development, Institute of General Energy of NAS of Ukraine, 03150 Kyiv, Ukraine)

  • Mykola Perov

    (Department of the Optimization of the Fuel Bases Development, Institute of General Energy of NAS of Ukraine, 03150 Kyiv, Ukraine)

  • Ihor Novitskii

    (Department of the Optimization of the Fuel Bases Development, Institute of General Energy of NAS of Ukraine, 03150 Kyiv, Ukraine)

  • Artur Zaporozhets

    (Department of Monitoring and Diagnostics of Energy Objects, Institute of General Energy of NAS of Ukraine, 03150 Kyiv, Ukraine
    Department of Environmental Protection Technologies and Radiation Safety, State Institution “The Institute of Environmental Geochemistry of National Academy of Sciences of Ukraine”, 03142 Kyiv, Ukraine)

  • Valerii Havrysh

    (Department of Tractors and Agricultural Machines, Operating and Maintenance, Mykolaiv National Agrarian University, 54020 Mykolaiv, Ukraine)

  • Vitalii Nitsenko

    (Department of Entrepreneurship and Marketing, Institute of Economics and Management, Ivano-Frankivsk National Technical Oil and Gas University, 76019 Ivano-Frankivsk, Ukraine
    SCIRE Foundation, 00867 Warsaw, Poland)

Abstract

The successful supply of an economy with coal fuel, for a country that carries out its large-scale extraction and import, is a complex production and logistics problem. Violations of the usual supply scheme in conditions of crises in the energy markets, international conflicts, etc., lead to the problem of simultaneous restructuring of the entire supply scheme. This requires changes in the directions and capacities of domestic production and imports. In this article, the above problem is solved by the economic and mathematical model of production type. The developed model includes subsystems of domestic production and import supply. The results of modeling economy supply with thermal coal for different values of demand are given. The model was used to determine the amounts of coal production for Ukraine with the structure of the coal industry of 2021 and under the condition of anthracite consumers’ transformation to the high volatile coal. Simulations have shown that eliminating the use of anthracite requires the modernization of existing coal mines. Under those conditions, the import of high volatile coal will amount to 3.751 million tons in 2030 and 11.8 million tons in 2035. The amounts of coking coal imports will be 5.46 million tons, 5.151 million tons, and 7.377 million tons in 2025, 2030, and 2035, respectively.

Suggested Citation

  • Tetiana Bilan & Mykola Kaplin & Vitaliy Makarov & Mykola Perov & Ihor Novitskii & Artur Zaporozhets & Valerii Havrysh & Vitalii Nitsenko, 2022. "The Balance and Optimization Model of Coal Supply in the Flow Representation of Domestic Production and Imports: The Ukrainian Case Study," Energies, MDPI, vol. 15(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8103-:d:959028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    2. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.
    3. Harsimranjit Kaur Romana & Ramesh P. Singh & Chandra S. Dubey & Dericks P. Shukla, 2022. "Analysis of Air and Soil Quality around Thermal Power Plants and Coal Mines of Singrauli Region, India," IJERPH, MDPI, vol. 19(18), pages 1-22, September.
    4. Oleksandra Hotra & Svitlana Kovtun & Oleg Dekusha & Żaklin Grądz, 2021. "Prospects for the Application of Wavelet Analysis to the Results of Thermal Conductivity Express Control of Thermal Insulation Materials," Energies, MDPI, vol. 14(17), pages 1-15, August.
    5. Zheqi Yang & Xuming Dou & Yuqing Jiang & Pengfei Luo & Yu Ding & Baosheng Zhang & Xu Tang, 2022. "Tracking the CO 2 Emissions of China’s Coal Production via Global Supply Chains," Energies, MDPI, vol. 15(16), pages 1-10, August.
    6. Clemens Haftendorn & Franziska Holz & Christian von Hirschhausen, 2010. "COALMOD-World: A Model to Assess International Coal Markets until 2030," Discussion Papers of DIW Berlin 1067, DIW Berlin, German Institute for Economic Research.
    7. Green, John W., 1980. "Western Energy: The Interregional Coal Analysis Model," Technical Bulletins 157733, United States Department of Agriculture, Economic Research Service.
    8. Shih, Li-Hsing, 1997. "Planning of fuel coal imports using a mixed integer programming method," International Journal of Production Economics, Elsevier, vol. 51(3), pages 243-249, September.
    9. Suwala, Wojciech, 2008. "Modelling adaptation of the coal industry to sustainability conditions," Energy, Elsevier, vol. 33(7), pages 1015-1026.
    10. Yujing Liu & Ruoyun Du & Dongxiao Niu, 2022. "Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios," Energies, MDPI, vol. 15(17), pages 1-16, September.
    11. Sherali, HD & Puri, R, 1993. "Models for a coal blending and distribution problem," Omega, Elsevier, vol. 21(2), pages 235-243, March.
    12. Min Dong & Yuhao Li & Xinglu Xu & Yaping Zha, 2022. "A Practical Accessibility Evaluation Method for Port-Centric Coal Transportation Chains: Considering the Environment and Operational Adaptability," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    13. Songyan Ren & Peng Wang & Zewei Lin & Daiqing Zhao, 2022. "The Policy Choice and Economic Assessment of High Emissions Industries to Achieve the Carbon Peak Target under Energy Shortage—A Case Study of Guangdong Province," Energies, MDPI, vol. 15(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chiun-Ming & Sherali, Hanif D., 2000. "A coal shipping and blending problem for an electric utility company," Omega, Elsevier, vol. 28(4), pages 433-444, August.
    2. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    3. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    4. Juhui Gim & Minsu Kim & Changsun Ahn, 2022. "Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-15, March.
    5. Anna Danandeh & Bo Zeng & Brent Caldwell & Brian Buckley, 2016. "A Decision Support System for Fuel Supply Chain Design at Tampa Electric Company," Interfaces, INFORMS, vol. 46(6), pages 503-521, December.
    6. Eleonora Riva Sanseverino & Le Quyen Luu, 2022. "Critical Raw Materials and Supply Chain Disruption in the Energy Transition," Energies, MDPI, vol. 15(16), pages 1-5, August.
    7. Paulus, Moritz, 2012. "How are investment decisions in the steam coal market affected by demand uncertainty and buyer-side market power?," EWI Working Papers 2012-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    9. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    10. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2022. "Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    11. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    12. Benim, Ali Cemal & Deniz Canal, Cansu & Boke, Yakup Erhan, 2022. "Computational investigation of oxy-combustion of pulverized coal and biomass in a swirl burner," Energy, Elsevier, vol. 238(PC).
    13. Zhang, Ruijun & Lu, Jie & Zhang, Guangquan, 2011. "A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces," European Journal of Operational Research, Elsevier, vol. 215(1), pages 194-203, November.
    14. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Gregory Trencher & Achmed Edianto, 2021. "Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany," Energies, MDPI, vol. 14(4), pages 1-26, February.
    16. Yuanliang Liu & Yinan Qiu & Zhan Liu & Gang Lei, 2022. "Modeling and Analysis of the Flow Characteristics of Liquid Hydrogen in a Pipe Suffering from External Transient Impact," Energies, MDPI, vol. 15(11), pages 1-12, June.
    17. Xiong, Yu & Kong, Dezhong & Song, Gaofeng, 2024. "Research hotspots and development trends of green coal mining: Exploring the path to sustainable development of coal mines," Resources Policy, Elsevier, vol. 92(C).
    18. José A. Ventura, 2023. "Climate Benefits Advocated by the Development of Sustainable Vehicles and Charging Infrastructures in the Transport Sector," Energies, MDPI, vol. 16(9), pages 1-5, April.
    19. Valerii Havrysh & Vitalii Nitsenko & Vasyl Hruban, 2022. "Sorghum-Based Power Generation in Southern Ukraine: Energy and Environmental Assessment," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    20. Agnieszka Urbanowska & Izabela Polowczyk & Małgorzata Kabsch-Korbutowicz & Przemysław Seruga, 2020. "Characteristics of Changes in Particle Size and Zeta Potential of the Digestate Fraction from the Municipal Waste Biogas Plant Treated with the Use of Chemical Coagulation/Precipitation Processes," Energies, MDPI, vol. 13(22), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8103-:d:959028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.