IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11560-d914468.html
   My bibliography  Save this article

Analysis of Air and Soil Quality around Thermal Power Plants and Coal Mines of Singrauli Region, India

Author

Listed:
  • Harsimranjit Kaur Romana

    (School of Civil and Environmental Engineering, IIT Mandi, Mandi 175005, India)

  • Ramesh P. Singh

    (School of Life and Environmental Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA)

  • Chandra S. Dubey

    (K R Mangalam University, Gurgaon 122103, India)

  • Dericks P. Shukla

    (School of Civil and Environmental Engineering, IIT Mandi, Mandi 175005, India)

Abstract

Singrauli region is known as the energy capital of India, as it generates nearly 21 GW of electricity, supplied to various parts of the northern India. Many coal-based Thermal Power Plants (TPPs) using coal from several nearby coal mines, and numerous industries are set up in this region which has made it as one of the highly polluted regions of India. In the present study, detailed temporal analysis and forecast of carbon dioxide (CO 2 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and methane (CH 4 ) concentrations retrieved from satellite data have been carried out for the periods 2005–2020. Based on the classical multiplicative model and using linear regression, the maximum concentration of CO 2 , NO 2 , SO 2 , and CH 4 in the year 2025 is found to be 422.59 ppm, 29.28 ppm, 0.23 DU, and 1901.35 ppbv, respectively. Detailed analysis shows that carbon dioxide has a 95% correlation with all other trace gases. We have also carried out the geo-accumulation index for the presence of various contaminants in the soil of this region. The geo-accumulation index shows that soil in and around thermal power plants and coal mines is contaminated by heavy metals. The cumulative index shows that soil around Hindalco industries, Bina coal mines, Khadia coal mines, and coal-based TPPs (Anpara and Vindhayachal) are highly polluted and a threat to human population living in the region.

Suggested Citation

  • Harsimranjit Kaur Romana & Ramesh P. Singh & Chandra S. Dubey & Dericks P. Shukla, 2022. "Analysis of Air and Soil Quality around Thermal Power Plants and Coal Mines of Singrauli Region, India," IJERPH, MDPI, vol. 19(18), pages 1-22, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11560-:d:914468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramesh P. Singh & Sarvan Kumar & Abhay K. Singh, 2018. "Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
    2. H. Douville & A. Ribes & B. Decharme & R. Alkama & J. Sheffield, 2013. "Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration," Nature Climate Change, Nature, vol. 3(1), pages 59-62, January.
    3. Hang Zhou & Wen-Tao Yang & Xin Zhou & Li Liu & Jiao-Feng Gu & Wen-Lei Wang & Jia-Ling Zou & Tao Tian & Pei-Qin Peng & Bo-Han Liao, 2016. "Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment," IJERPH, MDPI, vol. 13(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetiana Bilan & Mykola Kaplin & Vitaliy Makarov & Mykola Perov & Ihor Novitskii & Artur Zaporozhets & Valerii Havrysh & Vitalii Nitsenko, 2022. "The Balance and Optimization Model of Coal Supply in the Flow Representation of Domestic Production and Imports: The Ukrainian Case Study," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou Li & Hong Su & Li Wang & Danbiao Hu & Lijun Zhang & Jian Fang & Micong Jin & Samuel Selorm Fiati Kenston & Xin Song & Hongbo Shi & Jinshun Zhao & Guochuan Mao, 2018. "Epidemiological Study on Metal Pollution of Ningbo in China," IJERPH, MDPI, vol. 15(3), pages 1-14, February.
    2. H. Holly Wang & Jing Yang & Na Hao, 2022. "Consumers’ Willingness to Pay for Rice from Remediated Soil: Potential from the Public in Sustainable Soil Pollution Treatment," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    3. Mohineeta Pandey & Astha Tirkey & Ankesh Tiwari & Sang Soo Lee & Rashmi Dubey & Ki Hyun Kim & Sudhir Kumar Pandey, 2022. "The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    4. Aiman M. Bobaker & Intisar Alakili & Sukiman B. Sarmani & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2019. "Determination and Assessment of the Toxic Heavy Metal Elements Abstracted from the Traditional Plant Cosmetics and Medical Remedies: Case Study of Libya," IJERPH, MDPI, vol. 16(11), pages 1-14, June.
    5. Min Yang & Jianghua Zhang & Huaqing Chen & Hailing Ke & Youning Xu, 2023. "Human health risk assessment of toxic elements in soils and crops around Xiaoqinling gold-mining area, Northwestern China," Energy & Environment, , vol. 34(2), pages 283-303, March.
    6. Zhen Wang & Jianguo Bao & Tong Wang & Haseeb Tufail Moryani & Wei Kang & Jin Zheng & Changlin Zhan & Wensheng Xiao, 2021. "Hazardous Heavy Metals Accumulation and Health Risk Assessment of Different Vegetable Species in Contaminated Soils from a Typical Mining City, Central China," IJERPH, MDPI, vol. 18(5), pages 1-18, March.
    7. Renying Li & Zhigao Zhou & Xiaojin Xie & Yingxue Li & Yaohong Zhang & Xianghua Xu, 2016. "Effects of Dissolved Organic Matter on Uptake and Translocation of Lead in Brassica chinensis and Potential Health Risk of Pb," IJERPH, MDPI, vol. 13(7), pages 1-11, July.
    8. MB Dastagiri & Anjani Sneha Vajrala, 2018. "Financing Climate Change on Global Agriculture-An Overview," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(5), pages 148-153, July.
    9. Bifeng Hu & Xiaolin Jia & Jie Hu & Dongyun Xu & Fang Xia & Yan Li, 2017. "Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China," IJERPH, MDPI, vol. 14(9), pages 1-18, September.
    10. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
    11. Yaya Liang & Xiaoyun Yi & Zhi Dang & Qin Wang & Houmei Luo & Jie Tang, 2017. "Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China," IJERPH, MDPI, vol. 14(12), pages 1-17, December.
    12. Richard Oruko Ongon’g & Joshua N. Edokpayi & Titus A. M. Msagati & Nikita T. Tavengwa & Grace N. Ijoma & John O. Odiyo, 2020. "The Potential Health Risk Associated with Edible Vegetables Grown on Cr(VI) Polluted Soils," IJERPH, MDPI, vol. 17(2), pages 1-19, January.
    13. Agnieszka Medyńska-Juraszek & Magdalena Bednik & Piotr Chohura, 2020. "Assessing the Influence of Compost and Biochar Amendments on the Mobility and Uptake of Heavy Metals by Green Leafy Vegetables," IJERPH, MDPI, vol. 17(21), pages 1-16, October.
    14. Sonia Collado-López & Larissa Betanzos-Robledo & Martha María Téllez-Rojo & Héctor Lamadrid-Figueroa & Moisés Reyes & Camilo Ríos & Alejandra Cantoral, 2022. "Heavy Metals in Unprocessed or Minimally Processed Foods Consumed by Humans Worldwide: A Scoping Review," IJERPH, MDPI, vol. 19(14), pages 1-25, July.
    15. Liyu Yang & Pan Wu & Wentao Yang, 2022. "Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    16. Samavia Mubeen & Wenjuan Ni & Chuntao He & Zhongyi Yang, 2023. "Agricultural Strategies to Reduce Cadmium Accumulation in Crops for Food Safety," Agriculture, MDPI, vol. 13(2), pages 1-31, February.
    17. Lai, Chengguang & Chen, Xiaohong & Zhong, Ruida & Wang, Zhaoli, 2022. "Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change," Agricultural Water Management, Elsevier, vol. 259(C).
    18. Eliza Knez & Kornelia Kadac-Czapska & Kamila Dmochowska-Ślęzak & Małgorzata Grembecka, 2022. "Root Vegetables—Composition, Health Effects, and Contaminants," IJERPH, MDPI, vol. 19(23), pages 1-25, November.
    19. Mirela Miclean & Oana Cadar & Erika Andrea Levei & Radu Roman & Alexandru Ozunu & Levente Levei, 2019. "Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows," IJERPH, MDPI, vol. 16(21), pages 1-14, October.
    20. Nwoke I. B. & Edori, E. S., 2020. "Concentrations of Heavy Metals in Vegetable (Telfairaoccidentalis) from Farmlands Close to Rumuagholu Dumpsite, Rivers State, Niger Delta, Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 7(5), pages 181-184, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11560-:d:914468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.