IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v28y2000i4p433-444.html
   My bibliography  Save this article

A coal shipping and blending problem for an electric utility company

Author

Listed:
  • Liu, Chiun-Ming
  • Sherali, Hanif D.

Abstract

In this paper, we address the issues of coal supply and blending pertaining to an electric utility company in Taiwan. Since the fuel used by coal-fired power plants are mainly imported in bulk from overseas sources, the planning of coal shipping and blending is of great economic importance. This operation involves the consideration of (1) each contract's coal supply, quality and price, (2) each power plant's demand, environmental constraints and limit on the maximum number of different coal sources that can supply it, (3) installation of blending facilities and (4) the transient seaport's shipload capacity. A mixed-integer zero-one programming model is presented for finding optimal shipping and blending decisions of coal fuel from each overseas contract to each power plant. A solution procedure is developed that employs heuristic rules in conjunction with branch-and-bound methods, and is illustrated using real-world data collected from the electric power company. Results reveal the benefits of the proposed approach, which has proven to be very practical and convincing for the top management of the company.

Suggested Citation

  • Liu, Chiun-Ming & Sherali, Hanif D., 2000. "A coal shipping and blending problem for an electric utility company," Omega, Elsevier, vol. 28(4), pages 433-444, August.
  • Handle: RePEc:eee:jomega:v:28:y:2000:i:4:p:433-444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(99)00067-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shih, Jhih-Shyang & Frey, H. Christopher, 1995. "Coal blending optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 452-465, June.
    2. Shih, Li-Hsing, 1997. "Planning of fuel coal imports using a mixed integer programming method," International Journal of Production Economics, Elsevier, vol. 51(3), pages 243-249, September.
    3. Sherali, HD & Puri, R, 1993. "Models for a coal blending and distribution problem," Omega, Elsevier, vol. 21(2), pages 235-243, March.
    4. Tzeng, Gwo-Hshiung & Teodorovic, Dusan & Hwang, Ming-Jiu, 1996. "Fuzzy bicriteria multi-index transportation problems for coal allocation planning of Taipower," European Journal of Operational Research, Elsevier, vol. 95(1), pages 62-72, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Danandeh & Bo Zeng & Brent Caldwell & Brian Buckley, 2016. "A Decision Support System for Fuel Supply Chain Design at Tampa Electric Company," Interfaces, INFORMS, vol. 46(6), pages 503-521, December.
    2. Caner TaskIn, Z. & Tamer Ünal, A., 2009. "Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products," European Journal of Operational Research, Elsevier, vol. 199(1), pages 252-261, November.
    3. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    4. Prasad, Sanjeev K. & Mangaraj, B.K., 2022. "A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations," Energy Economics, Elsevier, vol. 108(C).
    5. Djeumou Fomeni, Franklin, 2018. "A multi-objective optimization approach for the blending problem in the tea industry," International Journal of Production Economics, Elsevier, vol. 205(C), pages 179-192.
    6. Gaurav Singh & Rodolfo García-Flores & Andreas Ernst & Palitha Welgama & Meimei Zhang & Kerry Munday, 2014. "Medium-Term Rail Scheduling for an Iron Ore Mining Company," Interfaces, INFORMS, vol. 44(2), pages 222-240, April.
    7. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2022. "Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    8. Bilgen, Bilge & Ozkarahan, Irem, 2007. "A mixed-integer linear programming model for bulk grain blending and shipping," International Journal of Production Economics, Elsevier, vol. 107(2), pages 555-571, June.
    9. Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
    10. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    11. Arigoni, Ashley & Newman, Alexandra & Turner, Cameron & Kaptur, Casey, 2017. "Optimizing global thermal coal shipments," Omega, Elsevier, vol. 72(C), pages 118-127.
    12. Pablo Benalcazar & Jacek Kamiński & Karol Stós, 2022. "An Integrated Approach to Long-Term Fuel Supply Planning in Combined Heat and Power Systems," Energies, MDPI, vol. 15(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    2. Anna Danandeh & Bo Zeng & Brent Caldwell & Brian Buckley, 2016. "A Decision Support System for Fuel Supply Chain Design at Tampa Electric Company," Interfaces, INFORMS, vol. 46(6), pages 503-521, December.
    3. Qifeng Cheng & Shiwei Ning & Xiaohua Xia & Fan Yang, 2016. "Modelling of coal trade process for the logistics enterprise and its optimisation with stochastic predictive control," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2241-2259, April.
    4. Djeumou Fomeni, Franklin, 2018. "A multi-objective optimization approach for the blending problem in the tea industry," International Journal of Production Economics, Elsevier, vol. 205(C), pages 179-192.
    5. Tetiana Bilan & Mykola Kaplin & Vitaliy Makarov & Mykola Perov & Ihor Novitskii & Artur Zaporozhets & Valerii Havrysh & Vitalii Nitsenko, 2022. "The Balance and Optimization Model of Coal Supply in the Flow Representation of Domestic Production and Imports: The Ukrainian Case Study," Energies, MDPI, vol. 15(21), pages 1-19, October.
    6. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    7. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    8. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2022. "Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    9. Sadeghi, Mehdi & Mirshojaeian Hosseini, Hossein, 2006. "Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)," Energy Policy, Elsevier, vol. 34(9), pages 993-1003, June.
    10. Zhang, Ruijun & Lu, Jie & Zhang, Guangquan, 2011. "A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces," European Journal of Operational Research, Elsevier, vol. 215(1), pages 194-203, November.
    11. Teodorovic, Dus[caron]an, 1999. "Fuzzy logic systems for transportation engineering: the state of the art," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 337-364, June.
    12. Gaurav Singh & Rodolfo García-Flores & Andreas Ernst & Palitha Welgama & Meimei Zhang & Kerry Munday, 2014. "Medium-Term Rail Scheduling for an Iron Ore Mining Company," Interfaces, INFORMS, vol. 44(2), pages 222-240, April.
    13. Bilgen, Bilge & Ozkarahan, Irem, 2007. "A mixed-integer linear programming model for bulk grain blending and shipping," International Journal of Production Economics, Elsevier, vol. 107(2), pages 555-571, June.
    14. Chan, Felix T. S. & Chung, S. H. & Wadhwa, Subhash, 2005. "A hybrid genetic algorithm for production and distribution," Omega, Elsevier, vol. 33(4), pages 345-355, August.
    15. Dinwoodie, John & Landamore, Melanie & Rigot-Muller, Patrick, 2014. "Dry bulk shipping flows to 2050: Delphi perceptions of early career specialists," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 64-75.
    16. Qing Feng & Qian Huang & Qingyan Zheng & Li Lu, 2018. "New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    17. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    18. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    19. Kravtsov, M.K. & Lukshin, E.V., 2008. "Polyhedral combinatorics of multi-index axial transportation problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 920-938, September.
    20. Guerras, Lidia S. & Martín, Mariano, 2019. "Optimal gas treatment and coal blending for reduced emissions in power plants: A case study in Northwest Spain," Energy, Elsevier, vol. 169(C), pages 739-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:28:y:2000:i:4:p:433-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.