IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11619-d916350.html
   My bibliography  Save this article

A Practical Accessibility Evaluation Method for Port-Centric Coal Transportation Chains: Considering the Environment and Operational Adaptability

Author

Listed:
  • Min Dong

    (Transport Planning and Research Institute, Ministry of Transport, Chaoyang District, Beijing 100028, China)

  • Yuhao Li

    (CCCC Second Harbor Consultants Co., Ltd., 555 Minzhu Road, Wuchang District, Wuhan 430061, China)

  • Xinglu Xu

    (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian 116023, China)

  • Yaping Zha

    (Transport Planning and Research Institute, Ministry of Transport, Chaoyang District, Beijing 100028, China)

Abstract

Improving the accessibility of coal transportation is a crucial issue for energy security, national defense, and livelihoods. In this study, a method to evaluate the performance of the port-centric coal transportation chain (PCTC), which is a crucial part of the international coal production and delivery process, is proposed. After analyzing the features of the port-centric coal transportation chain, a practical accessibility evaluation model is established based on the gravity model. Both the foreland and hinterland features are considered in the model. Based on the features of coal transportation, the concept of port operational adaptability is introduced to indicate the port’s ability to manage a fluctuating irregular workload. Moreover, environmental factors, including transportation emissions and dust pollution, are included in the evaluation system. Based on real data collected from China’s north-south coal transportation corridor, a case study presents the implementation of this comprehensive evaluation system in practice. This evaluation system enables us to determine the vulnerable areas in the coal maritime transportation network and provides a decision-making basis for both shippers and port owners.

Suggested Citation

  • Min Dong & Yuhao Li & Xinglu Xu & Yaping Zha, 2022. "A Practical Accessibility Evaluation Method for Port-Centric Coal Transportation Chains: Considering the Environment and Operational Adaptability," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11619-:d:916350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Jin Suk & Seo, Young-Joon & Ha, Min-Ho, 2019. "The role of maritime, land, and air transportation in economic growth: Panel evidence from OECD and non-OECD countries," Research in Transportation Economics, Elsevier, vol. 78(C).
    2. Jean-Claude Thill & Marim Kim, 2005. "Trip making, induced travel demand, and accessibility," Journal of Geographical Systems, Springer, vol. 7(2), pages 229-248, June.
    3. Franc, Pierre & Van der Horst, Martijn, 2010. "Understanding hinterland service integration by shipping lines and terminal operators: a theoretical and empirical analysis," Journal of Transport Geography, Elsevier, vol. 18(4), pages 557-566.
    4. Ferrari, C. & Parola, F. & Gattorna, E., 2011. "Measuring the quality of port hinterland accessibility: The Ligurian case," Transport Policy, Elsevier, vol. 18(2), pages 382-391, March.
    5. Salas-Olmedo, María Henar & García, Patricia & Gutiérrez, Javier, 2015. "Accessibility and transport infrastructure improvement assessment: The role of borders and multilateral resistance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 110-129.
    6. Calatayud, Agustina & Mangan, John & Palacin, Roberto, 2017. "Connectivity to international markets: A multi-layered network approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 61-71.
    7. Lam, Jasmine Siu Lee & Yap, Wei Yim, 2011. "Dynamics of liner shipping network and port connectivity in supply chain systems: analysis on East Asia," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1272-1281.
    8. Yang, Zhongzhen & Sun, Yu & Lee, Paul Tae-Woo, 2020. "Impact of the development of the China-Europe Railway Express – A case on the Chongqing international logistics center," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 244-261.
    9. Parola, Francesco & Veenstra, Albert W., 2008. "The spatial coverage of shipping lines and container terminal operators," Journal of Transport Geography, Elsevier, vol. 16(4), pages 292-299.
    10. Komei Sasaki & Tadahiro Ohashi & Asao Ando, 1997. "High-speed rail transit impact on regional systems: does the Shinkansen contribute to dispersion?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 77-98.
    11. Clott, Christopher & Hartman, Bruce C., 2016. "Supply chain integration, landside operations and port accessibility in metropolitan Chicago," Journal of Transport Geography, Elsevier, vol. 51(C), pages 130-139.
    12. Veterina Nosadila Riaventin & Sofyan Dwi Cahyo & Ivan Kristianto Singgih, 2021. "A Model for Developing Existing Ports Considering Economic Impact and Network Connectivity," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    13. Thill, Jean-Claude & Lim, Hyunwoo, 2010. "Intermodal containerized shipping in foreign trade and regional accessibility advantages," Journal of Transport Geography, Elsevier, vol. 18(4), pages 530-547.
    14. Vieira, José Geraldo Vidal & Fransoo, Jan C. & Carvalho, Carla Deguirmendjian, 2015. "Freight distribution in megacities: Perspectives of shippers, logistics service providers and carriers," Journal of Transport Geography, Elsevier, vol. 46(C), pages 46-54.
    15. Wang, Grace W.Y. & Zeng, Qingcheng & Li, Kevin & Yang, Jinglei, 2016. "Port connectivity in a logistic network: The case of Bohai Bay, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 341-354.
    16. Jiang, Jianlin & Lee, Loo Hay & Chew, Ek Peng & Gan, Chee Chun, 2015. "Port connectivity study: An analysis framework from a global container liner shipping network perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 47-64.
    17. Jha, Akshaya & Muller, Nicholas Z., 2018. "The local air pollution cost of coal storage and handling: Evidence from U.S. power plants," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 360-396.
    18. Liquan Guo & Zhongzhen Yang, 2018. "Evaluation of foreign trade transport accessibility for Mainland China," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(1), pages 34-52, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    2. Tetiana Bilan & Mykola Kaplin & Vitaliy Makarov & Mykola Perov & Ihor Novitskii & Artur Zaporozhets & Valerii Havrysh & Vitalii Nitsenko, 2022. "The Balance and Optimization Model of Coal Supply in the Flow Representation of Domestic Production and Imports: The Ukrainian Case Study," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Ping & Song, Lian & Xiao, Ruiqi & Huang, Chengfeng, 2022. "Evaluation of logistics and port connectivity in the Yangtze River Economic Belt of China," Transport Policy, Elsevier, vol. 126(C), pages 249-267.
    2. Wang, Grace W.Y. & Zeng, Qingcheng & Li, Kevin & Yang, Jinglei, 2016. "Port connectivity in a logistic network: The case of Bohai Bay, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 341-354.
    3. Martínez-Moya, Julián & Feo-Valero, María, 2020. "Measuring foreland container port connectivity disaggregated by destination markets: An index for Short Sea Shipping services in Spanish ports," Journal of Transport Geography, Elsevier, vol. 89(C).
    4. Koi Yu Adolf Ng & César Ducruet, 2014. "The changing tides of port geography (1950–2012)," Post-Print halshs-01359160, HAL.
    5. Hou, Weilu & Shi, Qin & Guo, Liquan, 2022. "Impacts of COVID-19 pandemic on foreign trade intermodal transport accessibility: Evidence from the Yangtze River Delta region of mainland China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 419-438.
    6. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    8. Guo, Jianke & Wang, Ziqi & Yu, Xuhui, 2022. "Accessibility measurement of China's coastal ports from a land-sea coordination perspective - An empirical study," Journal of Transport Geography, Elsevier, vol. 105(C).
    9. Kevin X. Li & Tae-Joon Park & Paul Tae-Woo Lee & Heather McLaughlin & Wenming Shi, 2018. "Container Transport Network for Sustainable Development in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    10. Halim, Ronald A. & Kwakkel, Jan H. & Tavasszy, Lóránt A., 2016. "A strategic model of port-hinterland freight distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 368-384.
    11. Santos, Tiago A. & Guedes Soares, C., 2019. "Container terminal potential hinterland delimitation in a multi-port system subject to a regionalization process," Journal of Transport Geography, Elsevier, vol. 75(C), pages 132-146.
    12. Achilleas Tsantis & John Mangan & Agustina Calatayud & Roberto Palacin, 2023. "Container shipping: a systematic literature review of themes and factors that influence the establishment of direct connections between countries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 667-697, December.
    13. Zhang, Xinfang & Liu, Chengliang & Peng, Yan & Lu, Jing, 2023. "Connectivity-based spatial patterns and factors influencing international container multimodal hubs in China under the Belt and Road initiative," Transport Policy, Elsevier, vol. 143(C), pages 10-24.
    14. Jordi Caballé Valls & Peter W. Langen & Lorena García Alonso & José Ángel Vallejo Pinto, 2020. "Understanding Port Choice Determinants and Port Hinterlands: Findings from an Empirical Analysis of Spain," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 53-67, March.
    15. Liehui Wang & Nanyi Zhang & Fei Ye & Yui‐yip Lau & César Ducruet, 2020. "The complex network analysis of liner shipping networks: Lessons from the merger between COSCO and CSCL," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1877-1893, December.
    16. Tovar, Beatriz & Wall, Alan, 2022. "The relationship between port-level maritime connectivity and efficiency," Journal of Transport Geography, Elsevier, vol. 98(C).
    17. Yang, Jinglei & Luo, Meifeng & Ji, Abing, 2016. "Analyzing the spatial–temporal evolution of a gateway’s hinterland: A case study of Shanghai, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 355-367.
    18. Ha, Min-Ho & Yang, Zaili & Lam, Jasmine Siu Lee, 2019. "Port performance in container transport logistics: A multi-stakeholder perspective," Transport Policy, Elsevier, vol. 73(C), pages 25-40.
    19. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    20. Yang, Zhongzhen & Sun, Yu & Lee, Paul Tae-Woo, 2020. "Impact of the development of the China-Europe Railway Express – A case on the Chongqing international logistics center," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 244-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11619-:d:916350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.