IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7249-d932014.html
   My bibliography  Save this article

Ellipsoidal Design of Robust Stabilization for Markov Jump Power Systems under Normal and Contingency Conditions

Author

Listed:
  • Hisham M. Soliman

    (Department of Electrical Power Engineering, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

  • Farag A. El-Sheikhi

    (Department of Electrical and Electronics Engineering, Istanbul Esenyurt University, Istanbul 34517, Turkey)

  • Ehab H. E. Bayoumi

    (Energy and Renewable energy Department, Faculty of Engineering, Egyptian Chinese University, Cairo 11724, Egypt)

  • Michele De Santis

    (Department of Engineering, Niccolò Cusano University, 00166 Rome, Italy)

Abstract

The essential prerequisites for secure customer service are power system stability and reliability. This work shows how to construct a robust switching control for studying power system load changes using an invariant ellipsoid method. Furthermore, the suggested control ensures stability when the system is subjected to random stochastic external disturbances, and functions randomly in two conditions: normal and contingency. The extreme (least) reliability state is chosen as the most severe scenario (corresponding to a transmission line outage). As a two-state Markov random chain, the transition probabilities are utilized to simulate the switching between normal and contingency modes (or processes). To characterize the dynamics of the studied system, a stochastic mathematical model is developed. The effect of stochastic disturbances and random normal/contingency operations is taken into account during the design stage. For a stochastic power system, a novel excitation control is designed. The attractive ellipsoid approach and linear matrix inequalities (LMIs) optimization are used to build the best two-controller gains. Therefore, the proposed modeling/design technique can be employed for the power system under load changes, stochastic topological changes, and random disturbances. Finally, the system’s random dynamics simulation indicates the effectiveness of the designed control law.

Suggested Citation

  • Hisham M. Soliman & Farag A. El-Sheikhi & Ehab H. E. Bayoumi & Michele De Santis, 2022. "Ellipsoidal Design of Robust Stabilization for Markov Jump Power Systems under Normal and Contingency Conditions," Energies, MDPI, vol. 15(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7249-:d:932014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
    2. Farag Ali El-Sheikhi & Hisham M. Soliman & Razzaqul Ahshan & Eklas Hossain, 2021. "Regional Pole Placers of Power Systems under Random Failures/Repair Markov Jumps," Energies, MDPI, vol. 14(7), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    2. Zhenghao Wang & Yonghui Liu & Zihao Yang & Wanhao Yang, 2021. "Load Frequency Control of Multi-Region Interconnected Power Systems with Wind Power and Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 14(8), pages 1-15, April.
    3. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    4. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
    5. Alexander Poznyak & Hussain Alazki & Hisham M. Soliman & Razzaqul Ahshan, 2022. "Ellipsoidal Design of Robust Stabilization of Power Systems Exposed to a Cycle of Lightning Surges Modeled by Continuous-Time Markov Jumps," Energies, MDPI, vol. 16(1), pages 1-16, December.
    6. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    7. Yang, Jin & Zhong, Qishui & Ghias, Amer M.Y.M. & Dong, Zhao Yang & Shi, Kaibo & Yu, Yongbin, 2023. "Distributed fault-tolerant PI load frequency control for power system under stochastic event-triggered scheme," Applied Energy, Elsevier, vol. 351(C).
    8. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    9. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    10. Mourad Kchaou & Houssem Jerbi & Dan Stefanoiu & Dumitru Popescu, 2022. "Quantized Fault-Tolerant Control for Descriptor Systems with Intermittent Actuator Faults, Randomly Occurring Sensor Non-Linearity, and Missing Data," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
    11. Huo, Zhihong & Wang, Bing, 2023. "Distributed resilient multi-event cooperative triggered mechanism based discrete sliding-mode control for wind-integrated power systems under denial of service attacks," Applied Energy, Elsevier, vol. 333(C).
    12. Bi-Ying Chen & Xing-Chen Shangguan & Li Jin & Dan-Yun Li, 2020. "An Improved Stability Criterion for Load Frequency Control of Power Systems with Time-Varying Delays," Energies, MDPI, vol. 13(8), pages 1-14, April.
    13. Mishra, Dillip Kumar & Ray, Prakash Kumar & Li, Li & Zhang, Jiangfeng & Hossain, M.J. & Mohanty, Asit, 2022. "Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    14. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    15. Xu, Luo & Guo, Qinglai & He, Guannan & Jia, Shuyu & Sun, Hongbin, 2022. "Novel properties of heterogeneous delay in inverter-based cyber–physical microgrids under fully distributed control," Applied Energy, Elsevier, vol. 306(PB).
    16. Liu, Xingyue & Shi, Kaibo & Cheng, Jun & Wen, Shiping & Liu, Yajuan, 2023. "Adaptive memory-based event-triggering resilient LFC for power system under DoS attack," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    17. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
    18. Xu, Luo & Guo, Qinglai & He, Guannan & Sun, Hongbin, 2021. "The impact of synchronous distributed control period on inverter-based cyber–physical microgrids stability with time delay," Applied Energy, Elsevier, vol. 301(C).
    19. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    20. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2021. "Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid," Energies, MDPI, vol. 14(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7249-:d:932014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.