IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012084.html
   My bibliography  Save this article

Distributed fault-tolerant PI load frequency control for power system under stochastic event-triggered scheme

Author

Listed:
  • Yang, Jin
  • Zhong, Qishui
  • Ghias, Amer M.Y.M.
  • Dong, Zhao Yang
  • Shi, Kaibo
  • Yu, Yongbin

Abstract

This article investigates the load frequency control problem of interconnected power systems by proposing a distributed fault-tolerant proportional integral (PI) control strategy. Firstly, a unified actuator fault model is established, and a distributed fault-tolerant PI control strategy is proposed on the basis of the actuator fault model. Then, a stochastic event-triggered scheme (SETS) based on stochastic sampling period is developed to relieve the redundant occupation of network communication resources. Further, an asymptotical stability criterion with H∞ performance is established by means of the Lyapunov method. Finally, illustrative examples are presented from two cases, isolated power system and interconnected power systems, to demonstrate the effectiveness of the designed control approach and the superiority of SETS compared with periodic event-triggered scheme.

Suggested Citation

  • Yang, Jin & Zhong, Qishui & Ghias, Amer M.Y.M. & Dong, Zhao Yang & Shi, Kaibo & Yu, Yongbin, 2023. "Distributed fault-tolerant PI load frequency control for power system under stochastic event-triggered scheme," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012084
    DOI: 10.1016/j.apenergy.2023.121844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Yang & Sun, Zhenxing & Li, Li-Wei & Park, Ju H. & Shen, Mouquan, 2022. "Event-triggered security adaptive control of uncertain multi-area power systems with cyber attacks," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    2. Zhenghao Wang & Yonghui Liu & Zihao Yang & Wanhao Yang, 2021. "Load Frequency Control of Multi-Region Interconnected Power Systems with Wind Power and Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 14(8), pages 1-15, April.
    3. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    4. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
    5. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    6. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    7. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    8. Huo, Zhihong & Wang, Bing, 2023. "Distributed resilient multi-event cooperative triggered mechanism based discrete sliding-mode control for wind-integrated power systems under denial of service attacks," Applied Energy, Elsevier, vol. 333(C).
    9. Bi-Ying Chen & Xing-Chen Shangguan & Li Jin & Dan-Yun Li, 2020. "An Improved Stability Criterion for Load Frequency Control of Power Systems with Time-Varying Delays," Energies, MDPI, vol. 13(8), pages 1-14, April.
    10. Mishra, Dillip Kumar & Ray, Prakash Kumar & Li, Li & Zhang, Jiangfeng & Hossain, M.J. & Mohanty, Asit, 2022. "Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    11. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    12. Xu, Luo & Guo, Qinglai & He, Guannan & Jia, Shuyu & Sun, Hongbin, 2022. "Novel properties of heterogeneous delay in inverter-based cyber–physical microgrids under fully distributed control," Applied Energy, Elsevier, vol. 306(PB).
    13. Liu, Xingyue & Shi, Kaibo & Cheng, Jun & Wen, Shiping & Liu, Yajuan, 2023. "Adaptive memory-based event-triggering resilient LFC for power system under DoS attack," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    14. Hisham M. Soliman & Farag A. El-Sheikhi & Ehab H. E. Bayoumi & Michele De Santis, 2022. "Ellipsoidal Design of Robust Stabilization for Markov Jump Power Systems under Normal and Contingency Conditions," Energies, MDPI, vol. 15(19), pages 1-16, October.
    15. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
    16. Xu, Luo & Guo, Qinglai & He, Guannan & Sun, Hongbin, 2021. "The impact of synchronous distributed control period on inverter-based cyber–physical microgrids stability with time delay," Applied Energy, Elsevier, vol. 301(C).
    17. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    18. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2021. "Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid," Energies, MDPI, vol. 14(9), pages 1-15, April.
    19. Yin, Linfei & Zhao, Lulin, 2021. "Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.