IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6998-d923559.html
   My bibliography  Save this article

Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review

Author

Listed:
  • Fei Li

    (City 4.0 Lab, School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia)

  • Tan Yigitcanlar

    (City 4.0 Lab, School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia)

  • Madhav Nepal

    (City 4.0 Lab, School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia)

  • Kien Nguyen Thanh

    (School of Electrical Engineering and Robotics, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia)

  • Fatih Dur

    (City 4.0 Lab, School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia)

Abstract

Increasingly people, especially those residing in urban areas with the urban heat island effect, are getting exposed to extreme heat due to ongoing global warming. A number of methods have been developed, so far, to assess urban heat vulnerability in different locations across the world concentrating on diverse aspects of these methods. While there is growing literature, thorough review studies that compare, contrast, and help understand the prospects and constraints of urban heat vulnerability assessment methods are scarce. This paper aims to bridge this gap in the literature. A systematic literature review with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach is utilized as the methodological approach. PRISMA is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses. The results are analyzed in three aspects—i.e., indicators and data, modelling approaches, and validation approaches. The main findings disclose that: (a) Three types of indicators are commonly used—i.e., demographic properties and socioeconomic status, health conditions and medical resources, and natural and built environmental factors; (b) Heat vulnerability indexing models, equal weighting method, and principal component analysis are commonly used in modelling and weighting approaches; (c) Statistical regressions and correlation coefficients between heat vulnerability results and adverse health outcomes are commonly used in validation approaches, but the performance varies across studies. This study informs urban policy and generates directions for prospective research and more accurate vulnerability assessment method development.

Suggested Citation

  • Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6998-:d:923559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Li & Cem Akkus & Xinhua Yu & Andrew Joyner & Jennifer Kmet & David Sweat & Chunrong Jia, 2019. "Heatwave Events and Mortality Outcomes in Memphis, Tennessee: Testing Effect Modification by Socioeconomic Status and Urbanicity," IJERPH, MDPI, vol. 16(22), pages 1-14, November.
    2. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    3. Jan K. Kazak, 2018. "The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland)," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    4. Government of Fiji, 2017. "Climate Vulnerability Assessment," World Bank Publications - Reports 28870, The World Bank Group.
    5. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    6. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    7. Jackson Voelkel & Dana Hellman & Ryu Sakuma & Vivek Shandas, 2018. "Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon," IJERPH, MDPI, vol. 15(4), pages 1-14, March.
    8. Gulrez Azhar & Shubhayu Saha & Partha Ganguly & Dileep Mavalankar & Jaime Madrigano, 2017. "Heat Wave Vulnerability Mapping for India," IJERPH, MDPI, vol. 14(4), pages 1-10, March.
    9. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    10. Robert G. D. Macnee & Akihiro Tokai, 2016. "Heat wave vulnerability and exposure mapping for Osaka City, Japan," Environment Systems and Decisions, Springer, vol. 36(4), pages 368-376, December.
    11. Hung Chak Ho & Anders Knudby & Wei Huang, 2015. "A Spatial Framework to Map Heat Health Risks at Multiple Scales," IJERPH, MDPI, vol. 12(12), pages 1-14, December.
    12. Liou, Yuei-An & Nguyen, Kim-Anh & Ho, Le-Thu, 2021. "Altering urban greenspace patterns and heat stress risk in Hanoi city during Master Plan 2030 implementation," Land Use Policy, Elsevier, vol. 105(C).
    13. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    14. You Jin Kwon & Dong Kun Lee & You Ha Kwon, 2020. "Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)?," IJERPH, MDPI, vol. 17(3), pages 1-26, February.
    15. Xue Liu & Wenze Yue & Xuchao Yang & Kejia Hu & Wei Zhang & Muyi Huang, 2020. "Mapping Urban Heat Vulnerability of Extreme Heat in Hangzhou via Comparing Two Approaches," Complexity, Hindawi, vol. 2020, pages 1-16, June.
    16. Zhi Cai & Yan Tang & Kai Chen & Guifeng Han, 2019. "Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    17. Do-Woo Kim & Ravinesh C. Deo & Jong-Seol Lee & Jong-Min Yeom, 2017. "Mapping heatwave vulnerability in Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 35-55, October.
    18. Yi Song Liu & Tan Yigitcanlar & Mirko Guaralda & Kenan Degirmenci & Aaron Liu & Michael Kane, 2022. "Leveraging the Opportunities of Wind for Cities through Urban Planning and Design: A PRISMA Review," Sustainability, MDPI, vol. 14(18), pages 1-78, September.
    19. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    20. Didem Dizdaroglu & Tan Yigitcanlar, 2016. "Integrating urban ecosystem sustainability assessment into policy-making: insights from the Gold Coast City," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(11), pages 1982-2006, November.
    21. Kamruzzaman, Md. & Deilami, Kaveh & Yigitcanlar, Tan, 2018. "Investigating the urban heat island effect of transit oriented development in Brisbane," Journal of Transport Geography, Elsevier, vol. 66(C), pages 116-124.
    22. Lucie Adélaïde & Olivier Chanel & Mathilde Pascal, 2022. "Health effects from heat waves in France: an economic evaluation," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(1), pages 119-131, February.
    23. Lucille Alonso & Florent Renard, 2020. "A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context," IJERPH, MDPI, vol. 17(3), pages 1-21, February.
    24. Sajida Perveen & Md. Kamruzzaman & Tan Yigitcanlar, 2017. "Developing Policy Scenarios for Sustainable Urban Growth Management: A Delphi Approach," Sustainability, MDPI, vol. 9(10), pages 1-27, October.
    25. Bev Wilson & Arnab Chakraborty, 2019. "Mapping vulnerability to extreme heat events: lessons from metropolitan Chicago," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(6), pages 1065-1088, May.
    26. Kwan-Young Oh & Moung-Jin Lee & Seong-Woo Jeon, 2017. "Development of the Korean Climate Change Vulnerability Assessment Tool (VESTAP)—Centered on Health Vulnerability to Heat Waves," Sustainability, MDPI, vol. 9(7), pages 1-15, June.
    27. Amirafshar Vaeztavakoli & Azadeh Lak & Tan Yigitcanlar, 2018. "Blue and Green Spaces as Therapeutic Landscapes: Health Effects of Urban Water Canal Areas of Isfahan," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    28. Stephanie Pincetl & Mikhail Chester & David Eisenman, 2016. "Urban Heat Stress Vulnerability in the U.S. Southwest: The Role of Sociotechnical Systems," Sustainability, MDPI, vol. 8(9), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    2. Minxuan Zheng & Jiahua Zhang & Lamei Shi & Da Zhang & Til Prasad Pangali Sharma & Foyez Ahmed Prodhan, 2020. "Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches," IJERPH, MDPI, vol. 17(18), pages 1-24, September.
    3. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    4. Wei Zhang & Qianxing Zhao & Minjie Pei, 2021. "How much uncertainty does the choice of data transforming method brings to heat risk mapping? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 349-373, March.
    5. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    6. Kijin Seong & Junfeng Jiao & Akhil Mandalapu, 2023. "Evaluating the effects of heat vulnerability on heat-related emergency medical service incidents: Lessons from Austin, Texas," Environment and Planning B, , vol. 50(3), pages 776-795, March.
    7. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    8. Joseph Karanja & Lawrence M. Kiage, 2022. "Scale implications and evolution of a social vulnerability index in Atlanta, Georgia, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 789-812, August.
    9. Lynée L Turek-Hankins & Miyuki Hino & Katharine J Mach, 2020. "Risk screening methods for extreme heat: Implications for equity-oriented adaptation," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    10. Jiaxing Xin & Jun Yang & Yipeng Jiang & Zhipeng Shi & Cui Jin & Xiangming Xiao & Jianhong (Cecilia) Xia & Ruxin Yang, 2023. "Variations of Urban Thermal Risk with Local Climate Zones," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
    11. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    12. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    13. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    14. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    15. Fangtian Liu & Erqi Xu & Hongqi Zhang, 2024. "Assessing typhoon disaster mitigation capacity and its uncertainty analysis in Hainan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9401-9420, September.
    16. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    17. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    18. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    19. Nikole Guerrero & Marta Contreras & Alondra Chamorro & Carolina Martínez & Tomás Echaveguren, 2023. "Social vulnerability in Chile: challenges for multi-scale analysis and disaster risk reduction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3067-3102, July.
    20. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6998-:d:923559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.