IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p1004-d316777.html
   My bibliography  Save this article

A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context

Author

Listed:
  • Lucille Alonso

    (UMR CNRS 5600 Environment, City and Society, Department of Geography and Spatial Planning University Jean Moulin Lyon 3, Faculty of Geography and Spatial Planning, 69007 Lyon, France)

  • Florent Renard

    (UMR CNRS 5600 Environment, City and Society, Department of Geography and Spatial Planning University Jean Moulin Lyon 3, Faculty of Geography and Spatial Planning, 69007 Lyon, France)

Abstract

Increases in the frequency and intensity of heat waves are direct consequences of global climate change with a higher risk for urban populations due to the urban heat island effect. Reducing urban overheating is a priority, as is identifying the most vulnerable people to establish targeted and coordinated public health policies. There are many ways of understanding the concept of vulnerability and multiple definitions and applications exist in the literature. To date, however, nothing has been done on the territory of this study, the metropolis of Lyon (France). The objective is thus to construct two vulnerability indices: physiological, focusing on the organism’s capacities to respond to heat waves; and socio-economic, based on the social and economic characteristics and capacities of the community. To this end, two complementary methodologies have been implemented: the AHP (Analytic Hierarchy Process) and the PCA (Principal Component Analysis) with Varimax rotation, respectively. The results were then spatialized to the smallest demographic census unit in France. The areas highlighted differed due to conceptual and methodological differences: the highest physiological vulnerabilities are in the center while the socio-economic ones are in the eastern periphery of the urban area. The location of these areas will enable prevention campaigns to be carried out, targeted according to the publics concerned.

Suggested Citation

  • Lucille Alonso & Florent Renard, 2020. "A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context," IJERPH, MDPI, vol. 17(3), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:1004-:d:316777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/1004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/1004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    2. Edward Cureton & Stanley Mulaik, 1975. "The weighted varimax rotation and the promax rotation," Psychometrika, Springer;The Psychometric Society, vol. 40(2), pages 183-195, June.
    3. Jackson Voelkel & Dana Hellman & Ryu Sakuma & Vivek Shandas, 2018. "Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon," IJERPH, MDPI, vol. 15(4), pages 1-14, March.
    4. Christoph Schär & Pier Luigi Vidale & Daniel Lüthi & Christoph Frei & Christian Häberli & Mark A. Liniger & Christof Appenzeller, 2004. "The role of increasing temperature variability in European summer heatwaves," Nature, Nature, vol. 427(6972), pages 332-336, January.
    5. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    6. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    7. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    8. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    9. Henry Kaiser, 1974. "An index of factorial simplicity," Psychometrika, Springer;The Psychometric Society, vol. 39(1), pages 31-36, March.
    10. Luis Inostroza & Massimo Palme & Francisco de la Barrera, 2016. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-26, September.
    11. Karen L. Akerlof & Paul L. Delamater & Caroline R. Boules & Crystal R. Upperman & Clifford S. Mitchell, 2015. "Vulnerable Populations Perceive Their Health as at Risk from Climate Change," IJERPH, MDPI, vol. 12(12), pages 1-15, December.
    12. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    13. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    14. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.
    15. Ramanathan, R. & Ganesh, L. S., 1994. "Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages," European Journal of Operational Research, Elsevier, vol. 79(2), pages 249-265, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magalie Técher & Hassan Ait Haddou & Rahim Aguejdad, 2023. "Urban Heat Island’s Vulnerability Assessment by Integrating Urban Planning Policies: A Case Study of Montpellier Méditerranée Metropolitan Area, France," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    2. Ernesto Infusino & Tommaso Caloiero & Francesco Fusto & Gianfranco Calderaro & Angelo Brutto & Giuseppe Tagarelli, 2021. "Characterization of the 2017 Summer Heat Waves and Their Effects on the Population of an Area of Southern Italy," IJERPH, MDPI, vol. 18(3), pages 1-16, January.
    3. Elena Cantatore & Dario Esposito & Alberico Sonnessa, 2023. "Mapping the Multi-Vulnerabilities of Outdoor Places to Enhance the Resilience of Historic Urban Districts: The Case of the Apulian Region Exposed to Slow and Rapid-Onset Disasters," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    4. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerda Ana Melnik-Leroy & Gintautas Dzemyda, 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases," Mathematics, MDPI, vol. 9(2), pages 1-25, January.
    2. Lee, Hakyeon & Geum, Youngjung, 2017. "Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 12-24.
    3. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    4. Wu, Cheng-Ru & Lin, Chin-Tsai & Tsai, Pei-Hsuan, 2010. "Evaluating business performance of wealth management banks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 971-979, December.
    5. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    6. Ualison Rébula De Oliveira & Hilda Anatiely Donato Souza & Carlos Augusto Gabriel Menezes & Henrique Martins Rocha, 2023. "Straightening machine preventive maintenance intervention plan based on AHP: a case study in a steel company in Brazil," Operations Management Research, Springer, vol. 16(3), pages 1577-1593, September.
    7. Milan Ranđelović & Jelena Stanković & Kristijan Kuk & Gordana Savić & Dragan Ranđelović, 2018. "An Approach to Determining the Importance of Model Criteria in Certifying a City as Business-Friendly," Interfaces, INFORMS, vol. 48(2), pages 156-165, April.
    8. Natalie M. Scala & Jayant Rajgopal & Luis G. Vargas & Kim LaScola Needy, 2016. "Group Decision Making with Dispersion in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 25(2), pages 355-372, March.
    9. R. Duncan McIntosh & Austin Becker, 2020. "Applying MCDA to weight indicators of seaport vulnerability to climate and extreme weather impacts for U.S. North Atlantic ports," Environment Systems and Decisions, Springer, vol. 40(3), pages 356-370, September.
    10. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    11. Jayaram, Jayanth & Tan, Keah-Choon, 2010. "Supply chain integration with third-party logistics providers," International Journal of Production Economics, Elsevier, vol. 125(2), pages 262-271, June.
    12. Jaime Martín-Martín & Bella Pajares-Hachero & Emilio Alba-Conejo & Nuria Ribelles & Antonio I. Cuesta-Vargas & Cristina Roldán-Jiménez, 2023. "Validation of the Upper Limb Functional Index on Breast Cancer Survivor," IJERPH, MDPI, vol. 20(6), pages 1-10, March.
    13. Hauck, Jana & Suess-Reyes, Julia & Beck, Susanne & Prügl, Reinhard & Frank, Hermann, 2016. "Measuring socioemotional wealth in family-owned and -managed firms: A validation and short form of the FIBER Scale," Journal of Family Business Strategy, Elsevier, vol. 7(3), pages 133-148.
    14. Fen Ren & Kexin Wang, 2022. "Modeling of the Chinese Dating App Use Motivation Scale According to Item Response Theory and Classical Test Theory," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    15. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    16. Shine George & P. P. Anil Kumar, 2022. "Indicator-based assessment of capacity development for disaster preparedness in the Indian context," Environment Systems and Decisions, Springer, vol. 42(3), pages 417-435, September.
    17. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    18. Ernest Bielinis & Jianzhong Xu & Aneta Anna Omelan, 2020. "A Novel Anti-Environmental Forest Experience Scale to Predict Preferred Pleasantness Associated with Forest Environments," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    19. Xaimarie Hernández-Cruz & Saylisse Dávila, 2020. "Quantifying adaptive capacity to floods: an assessment of Rincón, PR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1537-1564, August.
    20. Raveenajit Kaur A. P. & Kalvant Singh & Alberto Luis August, 2021. "Exploring the Factor Structure of the Constructs of Technological, Pedagogical, and Content Knowledge (TPACK): An Exploratory Factor Analysis Based on the Perceptions of TESOL Pre-Service Teachers at ," Research Journal of Education, Academic Research Publishing Group, vol. 7(2), pages 103-115, 06-2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:1004-:d:316777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.