IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6824-d918100.html
   My bibliography  Save this article

Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea

Author

Listed:
  • Heeyeon Lee

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea)

  • Sanghun Lee

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea)

Abstract

South Korea has a plan to realize a hydrogen economy, and it is essential to establish a main hydrogen pipeline for hydrogen transport. This study develops a cost estimation model applicable to the construction of hydrogen pipelines and conducts an economic analysis to evaluate various scenarios for hydrogen pipeline construction. As a result, the cost of modifying an existing natural gas to a hydrogen pipeline is the lowest, however, there are issues with the safety of the modified hydrogen pipes from natural gas and the necessity of the existing natural gas pipelines. In the case of a short-distance hydrogen pipeline, the cost is about 1.8 times that of the existing natural gas pipeline modification, but it is considered a transitional scenario before the construction of the main hydrogen pipeline nationwide. Lastly, in the case of long-distance main hydrogen pipeline construction, it takes about 3.7 times as much cost as natural gas pipeline modification, however it has the advantage of being the ultimate hydrogen pipeline network. In this study, various hydrogen pipeline establishment scenarios ware compared. These results are expected to be utilized to establish plans for building hydrogen pipelines and to evaluate their economic feasibility.

Suggested Citation

  • Heeyeon Lee & Sanghun Lee, 2022. "Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea," Energies, MDPI, vol. 15(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6824-:d:918100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt2gk0j8kq, Institute of Transportation Studies, UC Davis.
    2. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    3. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt9m40m75r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Hora & Florin Ciprian Dan & Dinu-Calin Secui & Horea Nicolae Hora, 2024. "Systematic Literature Review on Pipeline Transport Losses of Hydrogen, Methane, and Their Mixture, Hythane," Energies, MDPI, vol. 17(18), pages 1-22, September.
    2. Yujung Jung & Sanghun Lee, 2024. "Thermodynamic Feasibility Evaluation of Alkaline Thermal Treatment Process for Hydrogen Production and Carbon Capture from Biomass by Process Modeling," Energies, MDPI, vol. 17(7), pages 1-13, March.
    3. Enrique Saborit & Eduardo García-Rosales Vazquez & M. Dolores Storch de Gracia Calvo & Gema María Rodado Nieto & Pablo Martínez Fondón & Alberto Abánades, 2023. "Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen," Energies, MDPI, vol. 16(22), pages 1-12, November.
    4. Bożena Łosiewicz, 2024. "Technology for Green Hydrogen Production: Desk Analysis," Energies, MDPI, vol. 17(17), pages 1-41, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    2. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    3. Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
    4. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    5. Myers Jaffe , Amy & Dominguez-Faus , Rosa & Ogden, Joan & Parker, Nathan C. & Scheitrum , Daniel & McDonald, Zane & Fan , Yueyue & Durbin , Tom & Karavalakis, George & Wilcock, Justin & Miller , Marsh, 2017. "The Potential to Build Current Natural Gas Infrastructure to Accommodate the Future Conversion to Near-Zero Transportation Technology," Institute of Transportation Studies, Working Paper Series qt2tp3n5pm, Institute of Transportation Studies, UC Davis.
    6. Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
    7. Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    9. McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
    10. Tarufelli, Brittany & Snyder, Brian & Dismukes, David, 2021. "The Potential Impact of the U.S. Carbon Capture and Storage Tax Credit Expansion on the Economic Feasibility of Industrial Carbon Capture and Storage," Energy Policy, Elsevier, vol. 149(C).
    11. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    12. Zhang, Qi & Liu, Jiangfeng & Wang, Ge & Gao, Zhihui, 2024. "A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability," Applied Energy, Elsevier, vol. 363(C).
    13. Samsatli, Sheila & Samsatli, Nouri J., 2019. "The role of renewable hydrogen and inter-seasonal storage in decarbonising heat – Comprehensive optimisation of future renewable energy value chains," Applied Energy, Elsevier, vol. 233, pages 854-893.
    14. Bondita Robidas & Subrata Borgohain Gogoi, 2024. "Economic analysis of transportation of crude oil of Upper Assam Basin through pipeline," SN Business & Economics, Springer, vol. 4(8), pages 1-30, August.
    15. Lin, Zhenhong & Chen, Chien-Wei & Fan, Yueyue & Ogden, Joan M., 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California," Institute of Transportation Studies, Working Paper Series qt0333714s, Institute of Transportation Studies, UC Davis.
    16. van der Zwaan, B.C.C. & Schoots, K. & Rivera-Tinoco, R. & Verbong, G.P.J., 2011. "The cost of pipelining climate change mitigation: An overview of the economics of CH4, CO2 and H2 transportation," Applied Energy, Elsevier, vol. 88(11), pages 3821-3831.
    17. Sovacool, Benjamin K., 2009. "Energy policy and cooperation in Southeast Asia: The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) network," Energy Policy, Elsevier, vol. 37(6), pages 2356-2367, June.
    18. Parker, Nathan C & Ogden, Joan & Fan, Yueyue, 2009. "The role of biomass in California's hydrogen economy," Institute of Transportation Studies, Working Paper Series qt8412751s, Institute of Transportation Studies, UC Davis.
    19. Parker, Nathan C. & Ogden, Joan M. & Fan, Yueyue, 2008. "The role of biomass in California's hydrogen economy," Energy Policy, Elsevier, vol. 36(10), pages 3925-3939, October.
    20. Salvatore F. Cannone & Andrea Lanzini & Massimo Santarelli, 2021. "A Review on CO 2 Capture Technologies with Focus on CO 2 -Enhanced Methane Recovery from Hydrates," Energies, MDPI, vol. 14(2), pages 1-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6824-:d:918100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.