IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1661-d1367393.html
   My bibliography  Save this article

Thermodynamic Feasibility Evaluation of Alkaline Thermal Treatment Process for Hydrogen Production and Carbon Capture from Biomass by Process Modeling

Author

Listed:
  • Yujung Jung

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Republic of Korea)

  • Sanghun Lee

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Republic of Korea)

Abstract

Hydrogen is attracting attention as a low-carbon fuel. In particular, economical hydrogen production technologies without carbon emissions are gaining increasing attention. Recently, alkaline thermal treatment (ATT) has been proposed to reduce carbon emissions by capturing carbon in its solid phase during hydrogen production. By adding an alkali catalyst to the conventional thermochemical hydrogen production reaction, ATT enables carbon capture through the reaction of an alkali catalyst and carbon. In this study, a thermodynamic feasibility evaluation was carried out, and the effects of the process conditions for ATT with wheat straw grass (WSG) as biomass were investigated using Aspen Plus software V12.1. First, an ATT process model was developed, and basic thermodynamic equilibrium compositions were obtained in various conditions. Then, the effects of the process parameters of the reactor temperature and the mass ratio of NaOH/WSG (alkali/biomass, A/B value) were analyzed. Finally, the product gas compositions, process efficiency, and amount of carbon capture were evaluated. The results showed that the ATT process could be an efficient hydrogen production process with carbon capture, and the optimal process conditions were a reactor temperature of 800 °C, an A/B value of three, and a flow rate of steam of 6.9 × 10 −5 L/min. Under these conditions, the maximum efficiency and the amount of carbon dioxide captured were 56.9% and 28.41 mmol/g WSG, respectively.

Suggested Citation

  • Yujung Jung & Sanghun Lee, 2024. "Thermodynamic Feasibility Evaluation of Alkaline Thermal Treatment Process for Hydrogen Production and Carbon Capture from Biomass by Process Modeling," Energies, MDPI, vol. 17(7), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1661-:d:1367393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Heeyeon Lee & Sanghun Lee, 2022. "Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea," Energies, MDPI, vol. 15(18), pages 1-13, September.
    3. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    4. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    2. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    3. Enrique Saborit & Eduardo García-Rosales Vazquez & M. Dolores Storch de Gracia Calvo & Gema María Rodado Nieto & Pablo Martínez Fondón & Alberto Abánades, 2023. "Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen," Energies, MDPI, vol. 16(22), pages 1-12, November.
    4. Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
    5. Scherzinger, Marvin & Kaltschmitt, Martin, 2021. "Thermal pre-treatment options to enhance anaerobic digestibility – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Josué Rodríguez Diez & Silvia Tomé-Torquemada & Asier Vicente & Jon Reyes & G. Alonso Orcajo, 2023. "Decarbonization Pathways, Strategies, and Use Cases to Achieve Net-Zero CO 2 Emissions in the Steelmaking Industry," Energies, MDPI, vol. 16(21), pages 1-31, October.
    8. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2021. "Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw," Energy, Elsevier, vol. 226(C).
    9. Ekwenna, Emeka Boniface & Tabraiz, Shamas & Wang, Yaodong & Roskilly, Anthony, 2023. "Exploring the feasibility of biological hydrogen production using seed sludge pretreated with agro-industrial wastes," Renewable Energy, Elsevier, vol. 215(C).
    10. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    11. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Sambusiti, C. & Ficara, E. & Malpei, F. & Steyer, J.P. & Carrère, H., 2013. "Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum," Energy, Elsevier, vol. 55(C), pages 449-456.
    13. Pedro F Souza Filho & Akram Zamani & Jorge A Ferreira, 2020. "Valorization of Wheat Byproducts for the Co-Production of Packaging Material and Enzymes," Energies, MDPI, vol. 13(6), pages 1-14, March.
    14. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    15. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    16. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    18. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    19. Muhammad Usman Khan & Birgitte Kiaer Ahring, 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment," Energies, MDPI, vol. 14(18), pages 1-11, September.
    20. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1661-:d:1367393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.