IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p387-d478975.html
   My bibliography  Save this article

A Review on CO 2 Capture Technologies with Focus on CO 2 -Enhanced Methane Recovery from Hydrates

Author

Listed:
  • Salvatore F. Cannone

    (Energy Department, Politecnico di Torino, Via Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Andrea Lanzini

    (Energy Department, Politecnico di Torino, Via Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Massimo Santarelli

    (Energy Department, Politecnico di Torino, Via Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

Natural gas is considered a helpful transition fuel in order to reduce the greenhouse gas emissions of other conventional power plants burning coal or liquid fossil fuels. Natural Gas Hydrates (NGHs) constitute the largest reservoir of natural gas in the world. Methane contained within the crystalline structure can be replaced by carbon dioxide to enhance gas recovery from hydrates. This technical review presents a techno-economic analysis of the full pathway, which begins with the capture of CO 2 from power and process industries and ends with its transportation to a geological sequestration site consisting of clathrate hydrates. Since extracted methane is still rich in CO 2 , on-site separation is required. Focus is thus placed on membrane-based gas separation technologies widely used for gas purification and CO 2 removal from raw natural gas and exhaust gas. Nevertheless, the other carbon capture processes (i.e., oxy-fuel combustion, pre-combustion and post-combustion) are briefly discussed and their carbon capture costs are compared with membrane separation technology. Since a large-scale Carbon Capture and Storage (CCS) facility requires CO 2 transportation and storage infrastructure, a technical, cost and safety assessment of CO 2 transportation over long distances is carried out. Finally, this paper provides an overview of the storage solutions developed around the world, principally studying the geological NGH formation for CO 2 sinks.

Suggested Citation

  • Salvatore F. Cannone & Andrea Lanzini & Massimo Santarelli, 2021. "A Review on CO 2 Capture Technologies with Focus on CO 2 -Enhanced Methane Recovery from Hydrates," Energies, MDPI, vol. 14(2), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:387-:d:478975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    2. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    3. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    4. Le, Quang-Du & Rodriguez, Carla T. & Legoix, Ludovic N. & Pirim, Claire & Chazallon, Bertrand, 2020. "Influence of the initial CH4-hydrate system properties on CO2 capture kinetics," Applied Energy, Elsevier, vol. 280(C).
    5. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.
    6. Luo, Xiaobo & Wang, Meihong & Oko, Eni & Okezue, Chima, 2014. "Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network," Applied Energy, Elsevier, vol. 132(C), pages 610-620.
    7. Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt2gk0j8kq, Institute of Transportation Studies, UC Davis.
    8. Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt9m40m75r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pandey, Gaurav & Poothia, Tejaswa & Kumar, Asheesh, 2022. "Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization," Applied Energy, Elsevier, vol. 326(C).
    2. Omran, Ahmed & Nesterenko, Nikolay & Valtchev, Valentin, 2022. "Zeolitic ice: A route toward net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    2. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    3. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    4. Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
    5. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    6. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    7. Ye, Hongyu & Wu, Xuezhen & Guo, Gaoqiang & Huang, Qichao & Chen, Jingyu & Li, Dayong, 2023. "Application of the enlarged wellbore diameter to gas production enhancement from natural gas hydrates by complex structure well in the shenhu sea area," Energy, Elsevier, vol. 264(C).
    8. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    9. Myers Jaffe , Amy & Dominguez-Faus , Rosa & Ogden, Joan & Parker, Nathan C. & Scheitrum , Daniel & McDonald, Zane & Fan , Yueyue & Durbin , Tom & Karavalakis, George & Wilcock, Justin & Miller , Marsh, 2017. "The Potential to Build Current Natural Gas Infrastructure to Accommodate the Future Conversion to Near-Zero Transportation Technology," Institute of Transportation Studies, Working Paper Series qt2tp3n5pm, Institute of Transportation Studies, UC Davis.
    10. Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
    11. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    12. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Hongyu Ye & Xuezhen Wu & Dayong Li, 2021. "Numerical Simulation of Natural Gas Hydrate Exploitation in Complex Structure Wells: Productivity Improvement Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    14. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    15. Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.
    16. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    17. McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
    18. Tarufelli, Brittany & Snyder, Brian & Dismukes, David, 2021. "The Potential Impact of the U.S. Carbon Capture and Storage Tax Credit Expansion on the Economic Feasibility of Industrial Carbon Capture and Storage," Energy Policy, Elsevier, vol. 149(C).
    19. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    20. Samsatli, Sheila & Samsatli, Nouri J., 2019. "The role of renewable hydrogen and inter-seasonal storage in decarbonising heat – Comprehensive optimisation of future renewable energy value chains," Applied Energy, Elsevier, vol. 233, pages 854-893.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:387-:d:478975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.