The Potential to Build Current Natural Gas Infrastructure to Accommodate the Future Conversion to Near-Zero Transportation Technology
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Christopher & Yeh, Sonia & Zakerinia, Saleh & Ramea, Kalai & McCollum, David, 2015. "Achieving California's 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model," Energy Policy, Elsevier, vol. 77(C), pages 118-130.
- Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt9m40m75r, Institute of Transportation Studies, UC Davis.
- Parker, Nathan, 2004. "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, Working Paper Series qt2gk0j8kq, Institute of Transportation Studies, UC Davis.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
- Iren A. Makaryan & Igor V. Sedov & Eugene A. Salgansky & Artem V. Arutyunov & Vladimir S. Arutyunov, 2022. "A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities," Energies, MDPI, vol. 15(6), pages 1-27, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Qi & Liu, Jiangfeng & Wang, Ge & Gao, Zhihui, 2024. "A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability," Applied Energy, Elsevier, vol. 363(C).
- Samsatli, Sheila & Samsatli, Nouri J., 2019. "The role of renewable hydrogen and inter-seasonal storage in decarbonising heat – Comprehensive optimisation of future renewable energy value chains," Applied Energy, Elsevier, vol. 233, pages 854-893.
- Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
- Bondita Robidas & Subrata Borgohain Gogoi, 2024. "Economic analysis of transportation of crude oil of Upper Assam Basin through pipeline," SN Business & Economics, Springer, vol. 4(8), pages 1-30, August.
- Lin, Zhenhong & Chen, Chien-Wei & Fan, Yueyue & Ogden, Joan M., 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California," Institute of Transportation Studies, Working Paper Series qt0333714s, Institute of Transportation Studies, UC Davis.
- Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
- Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
- van der Zwaan, B.C.C. & Schoots, K. & Rivera-Tinoco, R. & Verbong, G.P.J., 2011. "The cost of pipelining climate change mitigation: An overview of the economics of CH4, CO2 and H2 transportation," Applied Energy, Elsevier, vol. 88(11), pages 3821-3831.
- Sovacool, Benjamin K., 2009. "Energy policy and cooperation in Southeast Asia: The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) network," Energy Policy, Elsevier, vol. 37(6), pages 2356-2367, June.
- Heeyeon Lee & Sanghun Lee, 2022. "Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea," Energies, MDPI, vol. 15(18), pages 1-13, September.
- Parker, Nathan C & Ogden, Joan & Fan, Yueyue, 2009. "The role of biomass in California's hydrogen economy," Institute of Transportation Studies, Working Paper Series qt8412751s, Institute of Transportation Studies, UC Davis.
- Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
- Parker, Nathan C. & Ogden, Joan M. & Fan, Yueyue, 2008. "The role of biomass in California's hydrogen economy," Energy Policy, Elsevier, vol. 36(10), pages 3925-3939, October.
- Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
- Salvatore F. Cannone & Andrea Lanzini & Massimo Santarelli, 2021. "A Review on CO 2 Capture Technologies with Focus on CO 2 -Enhanced Methane Recovery from Hydrates," Energies, MDPI, vol. 14(2), pages 1-32, January.
- Olateju, Babatunde & Monds, Joshua & Kumar, Amit, 2014. "Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands," Applied Energy, Elsevier, vol. 118(C), pages 48-56.
- Kwangu Kang & Youngkyun Seo & Daejun Chang & Seong-Gil Kang & Cheol Huh, 2015. "Estimation of CO 2 Transport Costs in South Korea Using a Techno-Economic Model," Energies, MDPI, vol. 8(3), pages 1-21, March.
- Parker, Nathan, 2007. "Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt5kr728sp, Institute of Transportation Studies, UC Davis.
- Clinton Thai & Jack Brouwer, 2023. "Comparative Levelized Cost Analysis of Transmitting Renewable Solar Energy," Energies, MDPI, vol. 16(4), pages 1-21, February.
- Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.
More about this item
Keywords
Engineering; Fuel cell vehicles; Hydrogen fuels; Natural gas; Natural gas buses; Natural gas distribution systems; Natural gas pipelines; Natural gas vehicles; Service stations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2tp3n5pm. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.