IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p622-d135731.html
   My bibliography  Save this article

A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements

Author

Listed:
  • Feng Yang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Lin Du

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Lijun Yang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Chao Wei

    (Jiangsu Electric Power Company Research Institute, Nanjing 211103, China)

  • Youyuan Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Liman Ran

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Peng He

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

Abstract

To facilitate better interpretation of dielectric response measurements—thereby directing numerical evidence for condition assessments of oil-paper-insulated equipment in high-voltage alternating current (HVAC) transmission systems—a novel approach is presented to estimate the parameters in the extended Debye model (EDM) using wideband frequency domain spectroscopy (FDS). A syncretic algorithm that integrates a genetic algorithm (GA) and the Levenberg-Marquardt (L-M) algorithm is introduced in the present study to parameterize EDM using the FDS measurements of a real-life 126 kV oil-impregnated paper (OIP) bushing under different controlled temperatures. As for the uncertainty of the EDM structure due to variable branch quantity, Akaike’s information criterion (AIC) is employed to determine the model orders. For verification, comparative analysis of FDS reconstruction and results of FDS transformation to polarization–depolarization current (PDC)/return voltage measurement (RVM) are presented. The comparison demonstrates good agreement between the measured and reconstructed spectroscopies of complex capacitance and tan δ over the full tested frequency band (10 −4 Hz–10 3 Hz) with goodness of fit over 0.99. Deviations between the tested and modelled PDC/RVM from FDS are then discussed. Compared with the previous studies to parameterize the model using time domain dielectric responses, the proposed method solves the problematic matching between EDM and FDS especially in a wide frequency band, and therefore assures a basis for quantitative insulation condition assessment of OIP-insulated apparatus in energy systems.

Suggested Citation

  • Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:622-:d:135731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazid Hadjadj & Fethi Meghnefi & Issouf Fofana & Hassan Ezzaidi, 2013. "On the Feasibility of Using Poles Computed from Frequency Domain Spectroscopy to Assess Oil Impregnated Paper Insulation Conditions," Energies, MDPI, vol. 6(4), pages 1-17, April.
    2. Stefan Tenbohlen & Sebastian Coenen & Mohammad Djamali & Andreas Müller & Mohammad Hamed Samimi & Martin Siegel, 2016. "Diagnostic Measurements for Power Transformers," Energies, MDPI, vol. 9(5), pages 1-25, May.
    3. Issouf Fofana & Yazid Hadjadj, 2016. "Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(9), pages 1-26, August.
    4. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    5. Byung Eun Lee & Jung-Wook Park & Peter A. Crossley & Yong Cheol Kang, 2014. "Induced Voltages Ratio-Based Algorithm for Fault Detection, and Faulted Phase and Winding Identification of a Three-Winding Power Transformer," Energies, MDPI, vol. 7(9), pages 1-19, September.
    6. Chen Wang & Jie Wu & Jianzhou Wang & Weigang Zhao, 2016. "Reliability Analysis and Overload Capability Assessment of Oil-Immersed Power Transformers," Energies, MDPI, vol. 9(1), pages 1-19, January.
    7. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, vol. 8(10), pages 1-40, October.
    8. Yiyi Zhang & Jiefeng Liu & Hanbo Zheng & Hua Wei & Ruijin Liao, 2017. "Study on Quantitative Correlations between the Ageing Condition of Transformer Cellulose Insulation and the Large Time Constant Obtained from the Extended Debye Model," Energies, MDPI, vol. 10(11), pages 1-17, November.
    9. Guoqiang Xia & Guangning Wu & Bo Gao & Haojie Yin & Feibao Yang, 2017. "A New Method for Evaluating Moisture Content and Aging Degree of Transformer Oil-Paper Insulation Based on Frequency Domain Spectroscopy," Energies, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasquale Cambareri & Carlo de Falco & Luca Di Rienzo & Paolo Seri & Gian Carlo Montanari, 2021. "Simulation and Modelling of Transient Electric Fields in HVDC Insulation Systems Based on Polarization Current Measurements," Energies, MDPI, vol. 14(24), pages 1-12, December.
    2. Mingxi Zhu & Liming Wang & Fanghui Yin & Masoud Farzaneh & Hongwei Mei & Lu Wen, 2018. "The Effect of a Vertical Electric Field on the Surface Flashover Characteristics of a Bushing Model," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Krzysztof Walczak & Jaroslaw Gielniak, 2021. "Temperature Distribution in the Insulation System of Condenser-Type HV Bushing—Its Effect on Dielectric Response in the Frequency Domain," Energies, MDPI, vol. 14(13), pages 1-18, July.
    4. Chenmeng Zhang & Kailin Zhao & Shijun Xie & Can Hu & Yu Zhang & Nanxi Jiang, 2021. "Research on the Time-Domain Dielectric Response of Multiple Impulse Voltage Aging Oil-Film Dielectrics," Energies, MDPI, vol. 14(7), pages 1-15, April.
    5. Jiacheng Xie & Ming Dong & Boning Yu & Yizhuo Hu & Kaige Yang & Changjie Xia, 2020. "Physical Model for Frequency Domain Spectroscopy of Oil–Paper Insulation in a Wide Temperature Range by a Novel Analysis Approach," Energies, MDPI, vol. 13(17), pages 1-17, September.
    6. Giovanni Hernandez & Abner Ramirez, 2022. "Dielectric Response Model for Transformer Insulation Using Frequency Domain Spectroscopy and Vector Fitting," Energies, MDPI, vol. 15(7), pages 1-14, April.
    7. Benhui Lai & Shichang Yang & Heng Zhang & Yiyi Zhang & Xianhao Fan & Jiefeng Liu, 2020. "Performance Assessment of Oil-Immersed Cellulose Insulator Materials Using Time–Domain Spectroscopy under Varying Temperature and Humidity Conditions," Energies, MDPI, vol. 13(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    2. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    3. Álvaro Jaramillo-Duque & Nicolás Muñoz-Galeano & José R. Ortiz-Castrillón & Jesús M. López-Lezama & Ricardo Albarracín-Sánchez, 2018. "Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance," Energies, MDPI, vol. 11(2), pages 1-12, February.
    4. Yiyi Zhang & Jiefeng Liu & Hanbo Zheng & Hua Wei & Ruijin Liao, 2017. "Study on Quantitative Correlations between the Ageing Condition of Transformer Cellulose Insulation and the Large Time Constant Obtained from the Extended Debye Model," Energies, MDPI, vol. 10(11), pages 1-17, November.
    5. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    6. Liang Zou & Yongkang Guo & Han Liu & Li Zhang & Tong Zhao, 2017. "A Method of Abnormal States Detection Based on Adaptive Extraction of Transformer Vibro-Acoustic Signals," Energies, MDPI, vol. 10(12), pages 1-18, December.
    7. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    8. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    9. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    10. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    11. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    12. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    13. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    14. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    15. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    16. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    17. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    18. Michał Kunicki & Sebastian Borucki & Andrzej Cichoń & Jerzy Frymus, 2019. "Modeling of the Winding Hot-Spot Temperature in Power Transformers: Case Study of the Low-Loaded Fleet," Energies, MDPI, vol. 12(18), pages 1-17, September.
    19. Zhongyong Zhao & Chao Tang & Qu Zhou & Lingna Xu & Yingang Gui & Chenguo Yao, 2017. "Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine," Energies, MDPI, vol. 10(12), pages 1-16, December.
    20. Jiacheng Xie & Ming Dong & Boning Yu & Yizhuo Hu & Kaige Yang & Changjie Xia, 2020. "Physical Model for Frequency Domain Spectroscopy of Oil–Paper Insulation in a Wide Temperature Range by a Novel Analysis Approach," Energies, MDPI, vol. 13(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:622-:d:135731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.