IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5839-d885957.html
   My bibliography  Save this article

A Neuro-Predictive Controller Scheme for Integration of a Basic Wind Energy Generation Unit with an Electrical Power System

Author

Listed:
  • Mohamed Abd-El-Hakeem Mohamed

    (Faculty of Engineering, Al-Azhar University, Qena 83511, Egypt)

  • Hossam Seddik Abbas

    (Faculty of Engineering, Assuit University, Assuit 71543, Egypt)

  • Mokhtar Shouran

    (Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Salah Kamel

    (Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

Abstract

Developing control methods that have the ability to preserve the stability and optimum operation of a wind energy generation unit connected to power systems constitutes an essential area of recent research in power systems control. The present work investigates a novel control of a wind energy system connected to a power system through a static VAR compensator (SVC). This advanced control is constructed via integration between the model predictive control (MPC) and an artificial neural network (ANN) to collect all of their advantages. The conventional MPC needs a high computational effort, or it can cause difficulties in implementation. These difficulties can be eliminated by using Laguerre-based MPC (LMPC). The ANN has high performance in optimization and modeling, but it is limited in improving dynamic performance. Conversely, MPC operation improves dynamic performance. The integration between ANN and LMPC increases the ability of the Neuro-MPC (LMPC-ANN) control system to conduct smooth tracking, overshoot reduction, optimization, and modeling. The new control scheme has strong, robust properties. Additionally, it can be applied to uncertainties and disturbances which result from high levels of wind speed variation. For comparison purposes, the performance of the studied system is estimated at different levels of wind speed based on different strategies, which are ANN only, Conventional MPC strategy, MPC-LQG strategy, ANN- LQG strategy, and the proposed control. This comparison proved the superiority of the proposed controller (LMPC-ANN) for improving the dynamic response where it mitigates wind fluctuation effects while maintaining the power generated and generator terminal voltage at optimum values.

Suggested Citation

  • Mohamed Abd-El-Hakeem Mohamed & Hossam Seddik Abbas & Mokhtar Shouran & Salah Kamel, 2022. "A Neuro-Predictive Controller Scheme for Integration of a Basic Wind Energy Generation Unit with an Electrical Power System," Energies, MDPI, vol. 15(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5839-:d:885957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    2. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.
    3. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
    2. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    3. Long, Huan & Xu, Shaohui & Gu, Wei, 2022. "An abnormal wind turbine data cleaning algorithm based on color space conversion and image feature detection," Applied Energy, Elsevier, vol. 311(C).
    4. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    6. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
    7. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    8. Cheng, Biyi & Yao, Yingxue, 2023. "Machine learning based surrogate model to analyze wind tunnel experiment data of Darrieus wind turbines," Energy, Elsevier, vol. 278(PA).
    9. Yeo, Eng Jet & Kennedy, David M. & O'Rourke, Fergal, 2022. "Tidal current turbine blade optimisation with improved blade element momentum theory and a non-dominated sorting genetic algorithm," Energy, Elsevier, vol. 250(C).
    10. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    11. Xiaoxun, Zhu & Zixu, Xu & Yu, Wang & Xiaoxia, Gao & Xinyu, Hang & Hongkun, Lu & Ruizhang, Liu & Yao, Chen & Huaxin, Liu, 2023. "Research on wind speed behavior prediction method based on multi-feature and multi-scale integrated learning," Energy, Elsevier, vol. 263(PA).
    12. Sun, Haiying & Yang, Hongxing & Gao, Xiaoxia, 2023. "Investigation into wind turbine wake effect on complex terrain," Energy, Elsevier, vol. 269(C).
    13. James Roetzer & Xingjie Li & John Hall, 2024. "Review of Data-Driven Models in Wind Energy: Demonstration of Blade Twist Optimization Based on Aerodynamic Loads," Energies, MDPI, vol. 17(16), pages 1-20, August.
    14. Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
    15. Xing, Zuoxia & Chen, Mingyang & Cui, Jia & Chen, Zhe & Xu, Jian, 2022. "Detection of magnitude and position of rotor aerodynamic imbalance of wind turbines using Convolutional Neural Network," Renewable Energy, Elsevier, vol. 197(C), pages 1020-1033.
    16. Shu, Tong & Song, Dongran & Hoon Joo, Young, 2022. "Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph," Applied Energy, Elsevier, vol. 306(PA).
    17. Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
    18. Ding, Jun-Wei & Chuang, Ming-Ju & Tseng, Jing-Siou & Hsieh, I-Yun Lisa, 2024. "Reanalysis and Ground Station data: Advanced data preprocessing in deep learning for wind power prediction," Applied Energy, Elsevier, vol. 375(C).
    19. Qiuzhen Wang & Jiangping Hu, 2023. "Modeling and Control of Wide-Area Networks," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    20. Zhu, Dongping & Huang, Xiaogang & Ding, Zhixia & Zhang, Wei, 2024. "Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5839-:d:885957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.