IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924014995.html
   My bibliography  Save this article

Augmenting insights from wind turbine data through data-driven approaches

Author

Listed:
  • Moss, Coleman
  • Maulik, Romit
  • Iungo, Giacomo Valerio

Abstract

Data-driven techniques can enable enhanced insights into wind turbine operations by efficiently extracting information from turbine data. This work outlines a data-driven strategy to augment these insights, describing its benefits and limitations. Different data-driven models are trained on supervisory control and data acquisition (SCADA) and meteorological data collected at an onshore wind farm. The developed models are used to predict wind speed, turbulence intensity (TI), and power capture for each turbine with excellent accuracy for different wind and atmospheric conditions. Modifications of the incoming freestream wind speed and TI due to the evolution of the wind field over the wind farm and effects associated with operating turbines are captured enabling modeling at the turbine level. Farm-level modeling is achieved by combining models predicting wind speed and TI at each turbine location from inflow conditions with models predicting power capture. Data-driven filters are also considered in the context of generating accurate data-driven models. In contrast to many current works that utilize simulated data, the proposed approach can describe subtle phenomena, such as speedups, TI damping, and wake-generated turbulence, from real-world turbine data. It is noteworthy that the accuracy achievable through data-driven modeling is limited by the quality of the data; therefore, guidelines are proposed to estimate resultant model performance from a given training set without the need to train or test a model.

Suggested Citation

  • Moss, Coleman & Maulik, Romit & Iungo, Giacomo Valerio, 2024. "Augmenting insights from wind turbine data through data-driven approaches," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014995
    DOI: 10.1016/j.apenergy.2024.124116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.