Machine learning based surrogate model to analyze wind tunnel experiment data of Darrieus wind turbines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127940
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
- Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
- Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Danao, Louis Angelo & Eboibi, Okeoghene & Howell, Robert, 2013. "An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 107(C), pages 403-411.
- Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Power prediction formula for blade design and optimization of Dual Darrieus Wind Turbines based on Taguchi Method and Genetic Expression Programming model," Renewable Energy, Elsevier, vol. 192(C), pages 583-605.
- Mustafa Kaya, 2019. "A CFD Based Application of Support Vector Regression to Determine the Optimum Smooth Twist for Wind Turbine Blades," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
- Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
- Jinkyoo Park & Soon-Duck Kwon & Kincho Law, 2017. "A Data-Driven, Cooperative Approach for Wind Farm Control: A Wind Tunnel Experimentation," Energies, MDPI, vol. 10(7), pages 1-17, June.
- Battisti, L. & Persico, G. & Dossena, V. & Paradiso, B. & Raciti Castelli, M. & Brighenti, A. & Benini, E., 2018. "Experimental benchmark data for H-shaped and troposkien VAWT architectures," Renewable Energy, Elsevier, vol. 125(C), pages 425-444.
- Optis, Mike & Perr-Sauer, Jordan, 2019. "The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 27-41.
- Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
- Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
- Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)," Renewable Energy, Elsevier, vol. 96(PA), pages 928-939.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiang, Xue & Xu, Chuanbao & Yang, Zhe & Ge, Chuntao & Nie, Shishuai & Yu, Anfeng & Ling, Xiaodong, 2024. "Equivalent notional nozzle model for high nozzle pressure ratio leakage of petrochemical high-pressure facility," Energy, Elsevier, vol. 295(C).
- Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
- Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
- Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
- Wang, Wei-Cheng & Wang, Jheng-Jie & Chong, Wen Tong, 2019. "The effects of unsteady wind on the performances of a newly developed cross-axis wind turbine: A wind tunnel study," Renewable Energy, Elsevier, vol. 131(C), pages 644-659.
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Peng, H.Y. & Lam, H.F. & Liu, H.J., 2019. "Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments," Energy, Elsevier, vol. 173(C), pages 121-132.
- Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
- Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
- Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Investigation of power performance and wake on a straight-bladed vertical axis wind turbine with field experiments," Energy, Elsevier, vol. 141(C), pages 1113-1123.
- Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
- Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
- Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
- Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
- Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
- Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
- Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
- Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
- Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
- Aya Aihara & Victor Mendoza & Anders Goude & Hans Bernhoff, 2022. "Comparison of Three-Dimensional Numerical Methods for Modeling of Strut Effect on the Performance of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(7), pages 1-21, March.
- Wekesa, David Wafula & Wang, Cong & Wei, Yingjie, 2016. "Empirical and numerical analysis of small wind turbine aerodynamic performance at a plateau terrain in Kenya," Renewable Energy, Elsevier, vol. 90(C), pages 377-385.
More about this item
Keywords
Data-driven model; Vertical axis wind turbine; Wind tunnel experiment; Machine learning algorithms;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013348. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.