IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5787-d884171.html
   My bibliography  Save this article

A Theoretical Approach for Resonance Analysis of Wind Turbines under 1P/3P Loads

Author

Listed:
  • Jijian Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Huan Zhou

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Xiaofeng Dong

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

Abstract

Wind turbines (WTs) are exposed to a dynamic/cyclic load environment, and are subjected to 1P/3P loads under operational conditions. Recent studies introduced the Sommerfeld Effect to explain the dynamic response amplification induced by 1P/3P loads. This study establishes a theoretical model to analyze the resonance of WTs under 1P/3P loads. Sensitiveness analysis was conducted for parameters b , c , S , F , and T to explore their influence on the dynamic response. The resonance phenomenon induced by 1P/3P frequency passing the natural frequency is discussed. The results show that there is no Sommerfeld Effect in soft–stiff WTs. Only if the imbalance reaches a much higher value (19200 kg·m in this study) should the Sommerfeld Effect be considered for soft WTs; otherwise, it can be ignored. The 3P resonance appeared when the 3P frequency approached the natural frequency, but it was not the Sommerfeld Effect.

Suggested Citation

  • Jijian Lian & Huan Zhou & Xiaofeng Dong, 2022. "A Theoretical Approach for Resonance Analysis of Wind Turbines under 1P/3P Loads," Energies, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5787-:d:884171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    2. Jenny Niebsch & Ronny Ramlau & Thien T. Nguyen, 2010. "Mass and Aerodynamic Imbalance Estimates of Wind Turbines," Energies, MDPI, vol. 3(4), pages 1-15, April.
    3. Petrović, Vlaho & Jelavić, Mate & Baotić, Mato, 2015. "Advanced control algorithms for reduction of wind turbine structural loads," Renewable Energy, Elsevier, vol. 76(C), pages 418-431.
    4. Wei-Hua Hu & De-Hui Tang & Ming Wang & Jun-Le Liu & Zuo-Hua Li & Wei Lu & Jun Teng & Samir Said & Rolf. G. Rohrmann, 2020. "Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis," Energies, MDPI, vol. 13(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    3. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
    4. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    6. Novaes Menezes, Eduardo José & Araújo, Alex Maurício & Rohatgi, Janardan Singh & González del Foyo, Pedro Manuel, 2018. "Active load control of large wind turbines using state-space methods and disturbance accommodating control," Energy, Elsevier, vol. 150(C), pages 310-319.
    7. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    8. Yuan, Yuan & Tang, J., 2017. "Adaptive pitch control of wind turbine for load mitigation under structural uncertainties," Renewable Energy, Elsevier, vol. 105(C), pages 483-494.
    9. Rybak, Aurelia & Rybak, Aleksandra & Kolev, Spas D., 2024. "Development of wind energy and access to REE. The case of Poland," Resources Policy, Elsevier, vol. 90(C).
    10. Xiaoling Sheng & Shuting Wan & Kanru Cheng & Xuan Wang, 2020. "Research on the Fault Characteristic of Wind Turbine Generator System Considering the Spatiotemporal Distribution of the Actual Wind Speed," Energies, MDPI, vol. 13(2), pages 1-16, January.
    11. Xing, Zuoxia & Chen, Mingyang & Cui, Jia & Chen, Zhe & Xu, Jian, 2022. "Detection of magnitude and position of rotor aerodynamic imbalance of wind turbines using Convolutional Neural Network," Renewable Energy, Elsevier, vol. 197(C), pages 1020-1033.
    12. Zheng Zhou & Kaizhi Dong & Ziwei Fang & Yang Liu, 2022. "A Two-Stage Approach for Damage Diagnosis of Structures Based on a Fully Distributed Strain Mode under Multigain Feedback Control," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    13. Davide Astolfi & Ravi Pandit & Linyue Gao & Jiarong Hong, 2022. "Individuation of Wind Turbine Systematic Yaw Error through SCADA Data," Energies, MDPI, vol. 15(21), pages 1-5, November.
    14. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    16. Njiri, Jackson G. & Beganovic, Nejra & Do, Manh H. & Söffker, Dirk, 2019. "Consideration of lifetime and fatigue load in wind turbine control," Renewable Energy, Elsevier, vol. 131(C), pages 818-828.
    17. Lin, Kun & Xiao, Shaohui & Zhou, Annan & Liu, Hongjun, 2020. "Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel," Renewable Energy, Elsevier, vol. 159(C), pages 1199-1214.
    18. Xiaoming Lei & Limin Sun & Ye Xia & Tiantao He, 2020. "Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    19. Maria Martinez Luengo & Athanasios Kolios, 2015. "Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 8(8), pages 1-16, August.
    20. Pinjia Zhang & Delong Lu, 2019. "A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines," Energies, MDPI, vol. 12(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5787-:d:884171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.