An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
- Andrew Kusiak & Xiupeng Wei, 2014. "Prediction of methane production in wastewater treatment facility: a data-mining approach," Annals of Operations Research, Springer, vol. 216(1), pages 71-81, May.
- Costa, M. & Massarotti, N. & Indrizzi, V. & Rajh, B. & Yin, C. & Samec, N., 2014. "Engineering bed models for solid fuel conversion process in grate-fired boilers," Energy, Elsevier, vol. 77(C), pages 244-253.
- Shi, Yan & Zhong, Wenqi & Chen, Xi & Yu, A.B. & Li, Jie, 2019. "Combustion optimization of ultra supercritical boiler based on artificial intelligence," Energy, Elsevier, vol. 170(C), pages 804-817.
- Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
- Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
- Böhler, Lukas & Görtler, Gregor & Krail, Jürgen & Kozek, Martin, 2019. "Carbon monoxide emission models for small-scale biomass combustion of wooden pellets," Applied Energy, Elsevier, vol. 254(C).
- Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
- Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
- Tianfei Sun & Bizhong Xia & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 12(19), pages 1-22, September.
- Tóth, Pál & Garami, Attila & Csordás, Bernadett, 2017. "Image-based deep neural network prediction of the heat output of a step-grate biomass boiler," Applied Energy, Elsevier, vol. 200(C), pages 155-169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paweł Tomtas & Amadeusz Skwiot & Elżbieta Sobiecka & Andrzej Obraniak & Katarzyna Ławińska & Tomasz P. Olejnik, 2021. "Bench Tests and CFD Simulations of Liquid–Gas Phase Separation Modeling with Simultaneous Liquid Transport and Mechanical Foam Destruction," Energies, MDPI, vol. 14(6), pages 1-14, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Aminmahalati, Alireza & Fazlali, Alireza & Safikhani, Hamed, 2021. "Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm," Energy, Elsevier, vol. 221(C).
- Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
- Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
- Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
- Sang-Mok Lee & So-Won Choi & Eul-Bum Lee, 2023. "Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)," Energies, MDPI, vol. 16(19), pages 1-33, September.
- Lei Han & Lingmei Wang & Hairui Yang & Chengzhen Jia & Enlong Meng & Yushan Liu & Shaoping Yin, 2023. "Optimization of Circulating Fluidized Bed Boiler Combustion Key Control Parameters Based on Machine Learning," Energies, MDPI, vol. 16(15), pages 1-23, July.
- Garbacz, Przemysław & Wejkowski, Robert, 2020. "Numerical research on the SNCR method in a grate boiler equipped with the innovative FJBS system," Energy, Elsevier, vol. 207(C).
- Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
- Héctor Rodríguez-Rángel & Dulce María Arias & Luis Alberto Morales-Rosales & Victor Gonzalez-Huitron & Mario Valenzuela Partida & Joan García, 2022. "Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems," Energies, MDPI, vol. 15(7), pages 1-18, March.
- Joanna Wnorowska & Waldemar Gądek & Sylwester Kalisz, 2020. "Statistical Model for Prediction of Ash Fusion Temperatures from Additive Doped Biomass," Energies, MDPI, vol. 13(24), pages 1-21, December.
- Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
- Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
- Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).
More about this item
Keywords
machine learning; artificial neural network; particle swarm optimization; importance analysis; thermal energy; grate-fired boiler;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5999-:d:446351. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.