IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5999-d446351.html
   My bibliography  Save this article

An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components

Author

Listed:
  • Halil Akbaş

    (Department of Industrial Engineering, Graduate School of Natural and Applied Sciences, Süleyman Demirel University, 32260 Isparta, Turkey)

  • Gültekin Özdemir

    (Department of Industrial Engineering, Faculty of Engineering, Süleyman Demirel University, 32260 Isparta, Turkey)

Abstract

Thermal energy is an important input of furniture components production. A thermal energy production system includes complex, non-linear, and changing combustion processes. The main focus of this article is the maximization of thermal energy production considering the inbuilt complexity of the thermal energy production system in a factory producing furniture components. To achieve this target, a data-driven prediction and optimization model to analyze and improve the performance of a thermal energy production system is implemented. The prediction models are constructed with daily data by using supervised machine learning algorithms. Importance analysis is also applied to select a subset of variables for the prediction models. The modeling accuracy of prediction algorithms is measured with statistical indicators. The most accurate prediction result was obtained using an artificial neural network model for thermal energy production. The integrated prediction and optimization model is designed with artificial neural network and particle swarm optimization models. Both controllable and uncontrollable variables were used as the inputs of the maximization model of thermal energy production. Thermal energy production is increased by 4.24% with respect to the optimal values of controllable variables determined by the integrated optimization model.

Suggested Citation

  • Halil Akbaş & Gültekin Özdemir, 2020. "An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components," Energies, MDPI, vol. 13(22), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5999-:d:446351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    2. Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
    3. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    4. Andrew Kusiak & Xiupeng Wei, 2014. "Prediction of methane production in wastewater treatment facility: a data-mining approach," Annals of Operations Research, Springer, vol. 216(1), pages 71-81, May.
    5. Böhler, Lukas & Görtler, Gregor & Krail, Jürgen & Kozek, Martin, 2019. "Carbon monoxide emission models for small-scale biomass combustion of wooden pellets," Applied Energy, Elsevier, vol. 254(C).
    6. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    7. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
    8. Tianfei Sun & Bizhong Xia & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 12(19), pages 1-22, September.
    9. Costa, M. & Massarotti, N. & Indrizzi, V. & Rajh, B. & Yin, C. & Samec, N., 2014. "Engineering bed models for solid fuel conversion process in grate-fired boilers," Energy, Elsevier, vol. 77(C), pages 244-253.
    10. Shi, Yan & Zhong, Wenqi & Chen, Xi & Yu, A.B. & Li, Jie, 2019. "Combustion optimization of ultra supercritical boiler based on artificial intelligence," Energy, Elsevier, vol. 170(C), pages 804-817.
    11. Tóth, Pál & Garami, Attila & Csordás, Bernadett, 2017. "Image-based deep neural network prediction of the heat output of a step-grate biomass boiler," Applied Energy, Elsevier, vol. 200(C), pages 155-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Tomtas & Amadeusz Skwiot & Elżbieta Sobiecka & Andrzej Obraniak & Katarzyna Ławińska & Tomasz P. Olejnik, 2021. "Bench Tests and CFD Simulations of Liquid–Gas Phase Separation Modeling with Simultaneous Liquid Transport and Mechanical Foam Destruction," Energies, MDPI, vol. 14(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    2. Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
    3. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    4. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    5. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    6. Aminmahalati, Alireza & Fazlali, Alireza & Safikhani, Hamed, 2021. "Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm," Energy, Elsevier, vol. 221(C).
    7. Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
    8. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
    9. Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
    10. Sang-Mok Lee & So-Won Choi & Eul-Bum Lee, 2023. "Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)," Energies, MDPI, vol. 16(19), pages 1-33, September.
    11. Lei Han & Lingmei Wang & Hairui Yang & Chengzhen Jia & Enlong Meng & Yushan Liu & Shaoping Yin, 2023. "Optimization of Circulating Fluidized Bed Boiler Combustion Key Control Parameters Based on Machine Learning," Energies, MDPI, vol. 16(15), pages 1-23, July.
    12. Garbacz, Przemysław & Wejkowski, Robert, 2020. "Numerical research on the SNCR method in a grate boiler equipped with the innovative FJBS system," Energy, Elsevier, vol. 207(C).
    13. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    14. Héctor Rodríguez-Rángel & Dulce María Arias & Luis Alberto Morales-Rosales & Victor Gonzalez-Huitron & Mario Valenzuela Partida & Joan García, 2022. "Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems," Energies, MDPI, vol. 15(7), pages 1-18, March.
    15. Joanna Wnorowska & Waldemar Gądek & Sylwester Kalisz, 2020. "Statistical Model for Prediction of Ash Fusion Temperatures from Additive Doped Biomass," Energies, MDPI, vol. 13(24), pages 1-21, December.
    16. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    17. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    18. Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
    19. Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
    20. Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5999-:d:446351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.