IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5163-d864117.html
   My bibliography  Save this article

Stochastic Distributed Control for Arbitrarily Connected Microgrid Clusters

Author

Listed:
  • Maryam Khanbaghi

    (Department of Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA)

  • Aleksandar Zecevic

    (Department of Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA)

Abstract

Due to the success of single microgrids, the coming years are likely to see a transformation of the current electric power system to a multiple microgrid network. Despite its obvious promise, however, this paradigm still faces many challenges, particularly when it comes to the control and coordination of energy exchanges between subsystems. In view of that, in this paper we propose an optimal stochastic control strategy in which microgrids are modeled as stochastic hybrid dynamic systems. The optimal control is based on the jump linear theory and is used as a means to maximize energy storage and the utilization of renewable energy sources in islanded microgrid clusters. Once the gain matrices are obtained, the concept of ε -suboptimality is applied to determine appropriate levels of power exchange between microgrids for any given interconnection pattern. It is shown that this approach can be efficiently applied to large-scale systems and guarantees their connective stability. Simulation results for a three microgrid cluster are provided as proof of concept.

Suggested Citation

  • Maryam Khanbaghi & Aleksandar Zecevic, 2022. "Stochastic Distributed Control for Arbitrarily Connected Microgrid Clusters," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5163-:d:864117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    2. Zhilin Lyu & Xiao Yang & Yiyi Zhang & Junhui Zhao, 2020. "Bi-Level Optimal Strategy of Islanded Multi-Microgrid Systems Based on Optimal Power Flow and Consensus Algorithm," Energies, MDPI, vol. 13(7), pages 1-19, March.
    3. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    4. Maryam Khanbaghi & Aleksandar Zecevic, 2020. "Jump Linear Quadratic Control for Microgrids with Commercial Loads," Energies, MDPI, vol. 13(19), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Sołtysik & Karolina Mucha-Kuś & Jacek Kamiński, 2022. "The New Model of Energy Cluster Management and Functioning," Energies, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    3. Maximiliano Lainfiesta & Xuewei Zhang, 2020. "Frequency Stability and Economic Operation of Transactive Multi-Microgrid Systems with Variable Interconnection Configurations," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Pan Wu & Wentao Huang & Nengling Tai & Zhoujun Ma & Xiaodong Zheng & Yong Zhang, 2019. "A Multi-Layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids," Energies, MDPI, vol. 12(2), pages 1-21, January.
    5. Hiranmay Samanta & Abhijit Das & Indrajt Bose & Joydip Jana & Ankur Bhattacharjee & Konika Das Bhattacharya & Samarjit Sengupta & Hiranmay Saha, 2021. "Field-Validated Communication Systems for Smart Microgrid Energy Management in a Rural Microgrid Cluster," Energies, MDPI, vol. 14(19), pages 1-15, October.
    6. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    7. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    8. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    13. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    14. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    15. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    17. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    18. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    19. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    20. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5163-:d:864117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.