IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2485-d358280.html
   My bibliography  Save this article

Frequency Stability and Economic Operation of Transactive Multi-Microgrid Systems with Variable Interconnection Configurations

Author

Listed:
  • Maximiliano Lainfiesta

    (College of Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

  • Xuewei Zhang

    (College of Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

Abstract

With the progressive addition of microgrids at the distribution level, complex networks of interconnected microgrids and the utility grid are likely to emerge. In such a scenario, advanced microgrid controllers are required to achieve operational stability objectives while maintaining a cost-effective operation. This paper investigates the control strategies, trading mechanisms, and interconnection configurations of a multi-microgrid and utility grid system for frequency stability analysis and operational cost optimization. The analysis is performed on a model of two interconnected microgrids and the utility grid, all possible interconnection configurations are tested. A robust controller is designed and the control parameters are later optimized to ensure that the frequency stability of the system is maintained under normal operating conditions and under various disturbances. A new control element based on switching between interconnection configurations is introduced to handle the power that flows between microgrids, aiming to minimize inter-microgrid energy trading cost while maintaining the system frequency fluctuations within tolerance levels. The effectiveness of the designed controller is demonstrated in this work. This work is expected to provide new insights in the field of multi-microgrid system design.

Suggested Citation

  • Maximiliano Lainfiesta & Xuewei Zhang, 2020. "Frequency Stability and Economic Operation of Transactive Multi-Microgrid Systems with Variable Interconnection Configurations," Energies, MDPI, vol. 13(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2485-:d:358280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaur, Amandeep & Kaushal, Jitender & Basak, Prasenjit, 2016. "A review on microgrid central controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 338-345.
    2. Haochen Hua & Chuantong Hao & Yuchao Qin & Junwei Cao, 2018. "A Class of Control Strategies for Energy Internet Considering System Robustness and Operation Cost Optimization," Energies, MDPI, vol. 11(6), pages 1-20, June.
    3. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    4. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    2. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Maryam Khanbaghi & Aleksandar Zecevic, 2022. "Stochastic Distributed Control for Arbitrarily Connected Microgrid Clusters," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Pan Wu & Wentao Huang & Nengling Tai & Zhoujun Ma & Xiaodong Zheng & Yong Zhang, 2019. "A Multi-Layer Coordinated Control Scheme to Improve the Operation Friendliness of Grid-Connected Multiple Microgrids," Energies, MDPI, vol. 12(2), pages 1-21, January.
    5. Hiranmay Samanta & Abhijit Das & Indrajt Bose & Joydip Jana & Ankur Bhattacharjee & Konika Das Bhattacharya & Samarjit Sengupta & Hiranmay Saha, 2021. "Field-Validated Communication Systems for Smart Microgrid Energy Management in a Rural Microgrid Cluster," Energies, MDPI, vol. 14(19), pages 1-15, October.
    6. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    7. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    8. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    13. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    14. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    15. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    16. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    17. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    18. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    19. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2485-:d:358280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.