IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v12y2017i4p392-399..html
   My bibliography  Save this article

Experimental investigation of evacuated heat pipe solar collector efficiency using phase-change fluid

Author

Listed:
  • Wenbo Fang
  • Saffa Riffat
  • Yupeng Wu

Abstract

Performance of a microencapsulated phase-change material (PCM) as a heat-transport medium in an evacuated heat pipe solar collector was evaluated and the results compared with those using water. Collector efficiency was experimentally determined according to the method based on European Standard EN 12975–2: 2006. This method proved unsuitable when using an encapsulated PCM suspension. A modified test method was proposed, which was appropriate for predicting solar collector efficiency when using a phase-change fluid. Average solar collection efficiency when using a PCM suspension was higher than that using water.

Suggested Citation

  • Wenbo Fang & Saffa Riffat & Yupeng Wu, 2017. "Experimental investigation of evacuated heat pipe solar collector efficiency using phase-change fluid," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 392-399.
  • Handle: RePEc:oup:ijlctc:v:12:y:2017:i:4:p:392-399.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctx010
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Ruolang & Wang, Xin & Chen, Binjiao & Zhang, Yinping & Niu, Jianlei & Wang, Xichun & Di, Hongfa, 2009. "Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux," Applied Energy, Elsevier, vol. 86(12), pages 2661-2670, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Krzysztof Dutkowski & Marcin Kruzel & Tadeusz Bohdal, 2021. "Experimental Studies of the Influence of Microencapsulated Phase Change Material on Thermal Parameters of a Flat Liquid Solar Collector," Energies, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    2. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    3. Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
    4. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Americano da Costa, Marcus V. & Pasamontes, Manuel & Normey-Rico, Julio E. & Guzmán, José L. & Berenguel, Manuel, 2013. "Viability and application of ethanol production coupled with solar cooling," Applied Energy, Elsevier, vol. 102(C), pages 501-509.
    6. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    7. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    8. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    9. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Ma, F. & Zhang, P. & Shi, X.J., 2018. "Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics," Applied Energy, Elsevier, vol. 227(C), pages 643-654.
    11. Kawanami, Tsuyoshi & Togashi, Kenichi & Fumoto, Koji & Hirano, Shigeki & Zhang, Peng & Shirai, Katsuaki & Hirasawa, Shigeki, 2016. "Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media," Energy, Elsevier, vol. 117(P2), pages 562-568.
    12. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    13. Yang, Liu & Liu, Shuli & Zheng, Hongfei, 2019. "A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Lu, W. & Tassou, S.A., 2012. "Experimental study of the thermal characteristics of phase change slurries for active cooling," Applied Energy, Elsevier, vol. 91(1), pages 366-374.
    15. Marcin Kruzel & Tadeusz Bohdal & Krzysztof Dutkowski & Mykola Radchenko, 2022. "The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger," Energies, MDPI, vol. 15(14), pages 1-11, July.
    16. Yu, Qinghua & Tchuenbou-Magaia, Fideline & Al-Duri, Bushra & Zhang, Zhibing & Ding, Yulong & Li, Yongliang, 2018. "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage," Applied Energy, Elsevier, vol. 211(C), pages 1190-1202.
    17. Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
    18. Li, Wenqiang & Zhang, Duo & Jing, Tingting & Gao, Mingyu & Liu, Peijin & He, Guoqiang & Qin, Fei, 2018. "Nano-encapsulated phase change material slurry (Nano-PCMS) saturated in metal foam: A new stable and efficient strategy for passive thermal management," Energy, Elsevier, vol. 165(PA), pages 743-751.
    19. Zhang, P. & Ma, Z.W., 2012. "An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5021-5058.
    20. Chen, Zhi & Fang, Guiyin, 2011. "Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4624-4632.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:12:y:2017:i:4:p:392-399.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.