IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4918-d856215.html
   My bibliography  Save this article

An Improved Data-Efficiency Algorithm Based on Combining Isolation Forest and Mean Shift for Anomaly Data Filtering in Wind Power Curve

Author

Listed:
  • Wei Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Shiyou Yang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yankun Yang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

A wind turbine working in a harsh environment is prone to generate abnormal data. An efficient algorithm based on the combination of an Isolation Forest (I-Forest) and a mean-shift algorithm is proposed for data cleaning in wind power curves. The I-Forest is used for detecting the local anomalies in each power and wind speed interval after data preprocessing. The contamination of I-Forest can be flexibly adjusted according to the data distribution of the wind turbine data. The remaining stacked data is eliminated by the mean-shift algorithm. To verify the filtering performance of the proposed combined method, five different algorithms, including the quartile and k -means (QK), the quartile and density-based spatial clustering (QD), the mathematical morphology operation (MMO), the fast data cleaning algorithm (FA), and the proposed one, are applied to the wind power curves of a prototype wind farm for comparisons. The numerical results have positively confirmed the reliability of the universal framework provided by the proposed algorithm.

Suggested Citation

  • Wei Wang & Shiyou Yang & Yankun Yang, 2022. "An Improved Data-Efficiency Algorithm Based on Combining Isolation Forest and Mean Shift for Anomaly Data Filtering in Wind Power Curve," Energies, MDPI, vol. 15(13), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4918-:d:856215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4918/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Zhou & Yanhong Ma & Qingquan Lv & Ruixiao Zhang & Wei Wang & Shiyou Yang, 2022. "Short-Term Interval Prediction of Wind Power Based on KELM and a Universal Tabu Search Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
    2. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    3. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    4. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    5. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    6. Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
    7. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    8. Li, Ding & Zhang, Yufei & Yang, Zheng & Jin, Yaohui & Xu, Yanyan, 2024. "Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder," Applied Energy, Elsevier, vol. 353(PA).
    9. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    10. Yao, Qingtao & Zhu, Haowei & Xiang, Ling & Su, Hao & Hu, Aijun, 2023. "A novel composed method of cleaning anomy data for improving state prediction of wind turbine," Renewable Energy, Elsevier, vol. 204(C), pages 131-140.
    11. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    12. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    13. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Mirza, Adeel Feroz & Shu, Zhaokun & Usman, Muhammad & Mansoor, Majad & Ling, Qiang, 2024. "Quantile-transformed multi-attention residual framework (QT-MARF) for medium-term PV and wind power prediction," Renewable Energy, Elsevier, vol. 220(C).
    15. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
    16. Xiaocong Xiao & Jianxun Liu & Deshun Liu & Yufei Tang & Shigang Qin & Fan Zhang, 2022. "A Normal Behavior-Based Condition Monitoring Method for Wind Turbine Main Bearing Using Dual Attention Mechanism and Bi-LSTM," Energies, MDPI, vol. 15(22), pages 1-17, November.
    17. Xiang, Ling & Fu, Xiaomengting & Yao, Qingtao & Zhu, Guopeng & Hu, Aijun, 2024. "A novel model for ultra-short term wind power prediction based on Vision Transformer," Energy, Elsevier, vol. 294(C).
    18. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
    19. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    20. Lv, Zhihan & Wang, Nana & Lou, Ranran & Tian, Yajun & Guizani, Mohsen, 2023. "Towards carbon Neutrality: Prediction of wave energy based on improved GRU in Maritime transportation," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4918-:d:856215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.