IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4523-d844048.html
   My bibliography  Save this article

Design of a Slot-Spaced Permanent Magnet Linear Alternator Based on Numerical Analysis

Author

Listed:
  • Chin-Hsiang Cheng

    (Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 70101, Taiwan)

  • Surender Dhanasekaran

    (International Doctoral Degree Program on Energy Engineering, National Cheng Kung University, Tainan City 70101, Taiwan)

Abstract

Linear alternators work seamlessly with Free-Piston Stirling Engines (FPSE) in the energy conversion process. This research concentrates on the design and development of a tubular slot-spaced Permanent Magnet Linear Alternator (PMLA) to be coupled with the FPSE. In an attempt to increase the power density of the machine over conventional PMLAs, a slot space is added to reduce the total mass of the stator and a parametrical study is carried out for the same. Numerically analyzing the fundamental parameters such as change of stator and magnet materials, and operating conditions frequency and stroke length. The effects of slotting are studied to understand the skinning effects on the tooth and the performance variation of the machine. A modified model is obtained to surpass 100 W from the numerical analysis of the parametric variations. Putting the machine to extreme limitations, the study conducted upon variations of parameters obtained a stable maximum power density of 186 W/kg and produced a power of 921 W for the designed PMLA. The study outlines the variation seen in the performance of the machine in such diverse conditions they go through during their life cycle.

Suggested Citation

  • Chin-Hsiang Cheng & Surender Dhanasekaran, 2022. "Design of a Slot-Spaced Permanent Magnet Linear Alternator Based on Numerical Analysis," Energies, MDPI, vol. 15(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4523-:d:844048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chin-Hsiang Cheng & Surender Dhanasekaran, 2021. "Numerical Analysis and Parametric Study of a 7 kW Tubular Permanent Magnet Linear Alternator," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    2. Peter Durcansky & Radovan Nosek & Jozef Jandacka, 2020. "Use of Stirling Engine for Waste Heat Recovery," Energies, MDPI, vol. 13(16), pages 1-15, August.
    3. Claudia Tebaldi & Roshanka Ranasinghe & Michalis Vousdoukas & D. J. Rasmussen & Ben Vega-Westhoff & Ebru Kirezci & Robert E. Kopp & Ryan Sriver & Lorenzo Mentaschi, 2021. "Extreme sea levels at different global warming levels," Nature Climate Change, Nature, vol. 11(9), pages 746-751, September.
    4. Huaqi Li & Xiaoyan Tian & Li Ge & Xiaoya Kang & Lei Zhu & Sen Chen & Lixin Chen & Xinbiao Jiang & Jianqiang Shan, 2022. "Development of a Performance Analysis Model for Free-Piston Stirling Power Convertor in Space Nuclear Reactor Power Systems," Energies, MDPI, vol. 15(3), pages 1-21, January.
    5. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    6. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    7. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
    8. de la Bat, B.J.G. & Dobson, R.T. & Harms, T.M. & Bell, A.J., 2020. "Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoma Irie & Mitsuhide Sato & Tsutomu Mizuno & Fumiya Nishimura & Kaname Naganuma, 2022. "Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator," Energies, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin-Hsiang Cheng & Surender Dhanasekaran, 2021. "Numerical Analysis and Parametric Study of a 7 kW Tubular Permanent Magnet Linear Alternator," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    2. Chin-Hsiang Cheng & Surender Dhanasekaran, 2023. "Cogging Force Reduction and Profile Smoothening Methods for a Slot-Spaced Permanent Magnet Linear Alternator," Energies, MDPI, vol. 16(15), pages 1-24, August.
    3. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    4. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    6. Mukhtarov, Shahriyar & Yüksel, Serhat & Dinçer, Hasan, 2022. "The impact of financial development on renewable energy consumption: Evidence from Turkey," Renewable Energy, Elsevier, vol. 187(C), pages 169-176.
    7. Biao Zhou & Jun Sun & Yuliang Sun, 2023. "Investigation on Laminar Flow and Heat Transfer of Helium–Xenon Gas Mixtures with Variable Properties," Energies, MDPI, vol. 16(4), pages 1-17, February.
    8. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    9. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    10. Sainan Cheng & Guohua Qu, 2023. "Research on the Effect of Digital Economy on Carbon Emissions under the Background of “Double Carbon”," IJERPH, MDPI, vol. 20(6), pages 1-27, March.
    11. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    13. Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
    14. Donatella Baiardi, 2021. "What do you think about climate change?," Working Papers 477, University of Milano-Bicocca, Department of Economics, revised Aug 2021.
    15. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Zhang, Yan & Yang, Binbin & Ji, Deliang & Hou, Xiaochen & Zhao, Bo & Zhang, Tiezhu, 2023. "Integrated simulation and performance analysis of Confined Piston Linear Generator (CPLG)," Energy, Elsevier, vol. 282(C).
    17. Jorge Castillo-Mateo & Jesús Asín & Ana C. Cebrián & Jesús Mateo-Lázaro & Jesús Abaurrea, 2023. "Bayesian Variable Selection in Generalized Extreme Value Regression: Modeling Annual Maximum Temperature," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
    18. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    19. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    20. Zhang, Zhiyuan & Feng, Huihua & He, Hongwen & Jia, Boru & Zuo, Zhengxing & Liu, Chang & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Demonstration of a single/dual cylinder free-piston engine generator prototype: Milestone achieved on system stability," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4523-:d:844048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.