IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4207-d833576.html
   My bibliography  Save this article

A Novel Energy Management Optimization Method for Commercial Users Based on Hybrid Simulation of Electricity Market Bidding

Author

Listed:
  • Jidong Wang

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Jiahui Wu

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Yingchen Shi

    (Chengnan District Power Supply Company of State Grid Tianjin Electric Power Company, Tianjin 300201, China)

Abstract

Energy management and utilization for commercial users is becoming increasingly intelligent and refined, fostering a closer and growing connection with the electricity market. In this paper, a novel energy management optimization theoretical framework for commercial users is proposed based on the hybrid simulation of electricity market bidding. The hybrid simulation model based on Multi-Agent Simulation (MAS) with reinforcement learning and System Dynamic Simulation (SDS) is established to solve the problem using a single simulation method: it cannot adjust the clearing price when considering the whole market; considering the uncertainty of Electric Vehicles (EVs) travel and Lighting Loads (LLs), the multi-objective optimization model of energy management for commercial users is constructed to minimize the total energy cost of commercial users, as well as maximize the lighting comfort of indoor office staff, which compensates for the lack of the single-objective optimization of the power consumption for commercial users. A multi-objective optimization model of energy management for commercial users is established based on the hybrid simulation of electricity market bidding. By running the multi-objective optimization model based on hybrid simulation, the results show that the proposed method can realize the optimization of energy management for commercial users considering electricity market bidding.

Suggested Citation

  • Jidong Wang & Jiahui Wu & Yingchen Shi, 2022. "A Novel Energy Management Optimization Method for Commercial Users Based on Hybrid Simulation of Electricity Market Bidding," Energies, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4207-:d:833576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jidong & Wu, Jiahui & Che, Yanbo, 2019. "Agent and system dynamics-based hybrid modeling and simulation for multilateral bidding in electricity market," Energy, Elsevier, vol. 180(C), pages 444-456.
    2. Yiqi Li & Jing Zhang & Zhoujun Ma & Yang Peng & Shuwen Zhao, 2021. "An Energy Management Optimization Method for Community Integrated Energy System Based on User Dominated Demand Side Response," Energies, MDPI, vol. 14(15), pages 1-22, July.
    3. Fang, Xichen & Guo, Hongye & Zhang, Xian & Wang, Xuanyuan & Chen, Qixin, 2022. "An efficient and incentive-compatible market design for energy storage participation," Applied Energy, Elsevier, vol. 311(C).
    4. Morcillo, José D. & Franco, Carlos J. & Angulo, Fabiola, 2018. "Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems," Applied Energy, Elsevier, vol. 216(C), pages 504-520.
    5. Bonomolo, Marina & Zizzo, Gaetano & Ferrari, Simone & Beccali, Marco & Guarino, Stefania, 2021. "Empirical BAC factors method application to two real case studies in South Italy," Energy, Elsevier, vol. 236(C).
    6. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edgardo Cayon & Julio Sarmiento, 2022. "The Impact of Coskewness and Cokurtosis as Augmentation Factors in Modeling Colombian Electricity Price Returns," Energies, MDPI, vol. 15(19), pages 1-8, September.
    2. Xian Huang & Zhehan Li, 2023. "A Comparative Analysis of Two Pricing Mechanisms, MCP and PAB, in the Chinese Frequency Regulation Market," Energies, MDPI, vol. 16(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thakur, Jagruti & Hesamzadeh, Mohammad Reza & Date, Paresh & Bunn, Derek, 2023. "Pricing and hedging wind power prediction risk with binary option contracts," Energy Economics, Elsevier, vol. 126(C).
    2. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2021. "Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study," Mathematics, MDPI, vol. 9(13), pages 1-26, July.
    3. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    4. Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
    5. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    6. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2020. "Analyzing the Hydroelectricity Variability on Power Markets from a System Dynamics and Dynamic Systems Perspective: Seasonality and ENSO Phenomenon," Energies, MDPI, vol. 13(9), pages 1-25, May.
    8. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    9. Becerra-Fernandez, Mauricio & Sarmiento, Alfonso T. & Cardenas, Laura M., 2023. "Sustainability assessment of the solar energy supply chain in Colombia," Energy, Elsevier, vol. 282(C).
    10. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    11. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    12. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).
    14. Zeng, Bo & Zhang, Weixiang & Hu, Pinduan & Sun, Jing & Gong, Dunwei, 2023. "Synergetic renewable generation allocation and 5G base station placement for decarbonizing development of power distribution system: A multi-objective interval evolutionary optimization approach," Applied Energy, Elsevier, vol. 351(C).
    15. Bagherabadi, Kamyar Maleki & Skjong, Stian & Bruinsma, Jogchum & Pedersen, Eilif, 2023. "Investigation of hybrid power plant configurations for an offshore vessel with co-simulation approach," Applied Energy, Elsevier, vol. 343(C).
    16. Hongwei Zhang & Xinghai Ma & Yanan Yang, 2022. "An External Ocean Thermal Energy Power Generation Modular Device for Powering Smart Float," Energies, MDPI, vol. 15(10), pages 1-18, May.
    17. Dehghan, Hamed & Amin-Naseri, Mohammad Reza, 2022. "A simulation-based optimization model to determine optimal electricity prices under various scenarios considering stakeholders’ objectives," Energy, Elsevier, vol. 238(PC).
    18. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
    19. Liu, Donghui & Gao, Xiangyun & An, Haizhong & Qi, Yabin & Wang, Ze & Jia, Nanfei & Chen, Zhihua, 2020. "Exploring behavior changes of the lithium market in China: Toward technology-oriented future scenarios," Resources Policy, Elsevier, vol. 69(C).
    20. An, Qing & Peng, Jian, 2023. "Parameter identification of lithium battery pack based on novel cooperatively coevolving differential evolution algorithm," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4207-:d:833576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.