IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221017461.html
   My bibliography  Save this article

Empirical BAC factors method application to two real case studies in South Italy

Author

Listed:
  • Bonomolo, Marina
  • Zizzo, Gaetano
  • Ferrari, Simone
  • Beccali, Marco
  • Guarino, Stefania

Abstract

The application of Building Automation and Control (BAC) systems has many advantages. One of these is the reduction of the end-user electricity consumption and, if applied to lighting systems, the achievement of well-acknowledged benefits from daylight, such as productivity, health, visual comfort and well-being. Concerning the first aspect, the international Standard EN 15232 proposes the so-called BAC Factors (BF) method to assess the impact of BAC systems on the final energy consumption. The method provides a simplified estimation of the energy savings due to automation in buildings and questions arise on its applicability in some situations. For this reason, the authors have carried out an experimental study aiming at comparing the energy savings calculated using the simplified BAC factor method with those evaluated with a measurement campaign on a laboratory setup. In particular, the BF are evaluated for an office and a residential environment, using sets of data measured in two cases study in South Italy by testing two lighting control systems in different end-uses (residential and office). The comparison between the sets of data shows the limits of the simplified BAC factor method.

Suggested Citation

  • Bonomolo, Marina & Zizzo, Gaetano & Ferrari, Simone & Beccali, Marco & Guarino, Stefania, 2021. "Empirical BAC factors method application to two real case studies in South Italy," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017461
    DOI: 10.1016/j.energy.2021.121498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    2. Tushar, Wayes & Lan, Lan & Withanage, Chathura & Sng, Hui En Karen & Yuen, Chau & Wood, Kristin L. & Saha, Tapan Kumar, 2020. "Exploiting design thinking to improve energy efficiency of buildings," Energy, Elsevier, vol. 197(C).
    3. López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & García-Lozano, César, 2016. "Update of energy performance certificates in the residential sector and scenarios that consider the impact of automation, control and management systems: A case study of La Rioja," Applied Energy, Elsevier, vol. 178(C), pages 308-322.
    4. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    5. Beccali, M. & Bonomolo, M. & Ciulla, G. & Lo Brano, V., 2018. "Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems. A new method based on artificial neural networks," Energy, Elsevier, vol. 154(C), pages 466-476.
    6. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    7. Galatioto, A. & Beccali, M., 2016. "Aspects and issues of daylighting assessment: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 852-860.
    8. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    9. Fabbri, Kristian & Marinosci, Cosimo, 2018. "EPBD independent control system for energy performance certification: The Emilia-Romagna Region (Italy) pioneering experience," Energy, Elsevier, vol. 165(PB), pages 563-576.
    10. Ikuzwe, Alice & Ye, Xianming & Xia, Xiaohua, 2020. "Energy-maintenance optimization for retrofitted lighting system incorporating luminous flux degradation to enhance visual comfort," Applied Energy, Elsevier, vol. 261(C).
    11. Cauchi, Nathalie & Macek, Karel & Abate, Alessandro, 2017. "Model-based predictive maintenance in building automation systems with user discomfort," Energy, Elsevier, vol. 138(C), pages 306-315.
    12. Kunwar, Niraj & Cetin, Kristen S. & Passe, Ulrike & Zhou, Xiaohui & Li, Yunhua, 2020. "Energy savings and daylighting evaluation of dynamic venetian blinds and lighting through full-scale experimental testing," Energy, Elsevier, vol. 197(C).
    13. Dadashi-Rad, Mohammad Hosein & Ghasemi-Marzbali, Ali & Ahangar, Roya Ahmadi, 2020. "Modeling and planning of smart buildings energy in power system considering demand response," Energy, Elsevier, vol. 213(C).
    14. Beccali, Marco & Bellia, Laura & Fragliasso, Francesca & Bonomolo, Marina & Zizzo, Gaetano & Spada, Gennaro, 2020. "Assessing the lighting systems flexibility for reducing and managing the power peaks in smart grids," Applied Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jidong Wang & Jiahui Wu & Yingchen Shi, 2022. "A Novel Energy Management Optimization Method for Commercial Users Based on Hybrid Simulation of Electricity Market Bidding," Energies, MDPI, vol. 15(12), pages 1-24, June.
    2. Van Thillo, L. & Verbeke, S. & Audenaert, A., 2022. "The potential of building automation and control systems to lower the energy demand in residential buildings: A review of their performance and influencing parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aris Tsangrassoulis & Lambros Doulos & Angelos Mylonas, 2021. "Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System," Energies, MDPI, vol. 14(21), pages 1-22, October.
    2. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    3. Jie Li & Qichao Ban & Xueming (Jimmy) Chen & Jiawei Yao, 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort," Energies, MDPI, vol. 12(4), pages 1-14, February.
    4. Ignacio Acosta & Miguel Ángel Campano & Samuel Domínguez-Amarillo & Carmen Muñoz, 2018. "Dynamic Daylight Metrics for Electricity Savings in Offices: Window Size and Climate Smart Lighting Management," Energies, MDPI, vol. 11(11), pages 1-27, November.
    5. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    6. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    7. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    8. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    9. Sara Eriksson & Lovisa Waldenström & Max Tillberg & Magnus Österbring & Angela Sasic Kalagasidis, 2019. "Numerical Simulations and Empirical Data for the Evaluation of Daylight Factors in Existing Buildings in Sweden," Energies, MDPI, vol. 12(11), pages 1-24, June.
    10. Nataša Šprah & Mitja Košir, 2019. "Daylight Provision Requirements According to EN 17037 as a Restriction for Sustainable Urban Planning of Residential Developments," Sustainability, MDPI, vol. 12(1), pages 1-22, December.
    11. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    12. Wang, Xipan & Song, Junnian & Xing, Jiahao & Duan, Haiyan & Wang, Xian'en, 2022. "System nexus consolidates coupling of regional water and energy efficiencies," Energy, Elsevier, vol. 256(C).
    13. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    14. Herie Park, 2020. "Human Comfort-Based-Home Energy Management for Demand Response Participation," Energies, MDPI, vol. 13(10), pages 1-15, May.
    15. Rona George Allwyn & Rashid Al Abri & Arif Malik & Amer Al-Hinai, 2021. "Economic Analysis of Replacing HPS Lamp with LED Lamp and Cost Estimation to Set Up PV/Battery System for Street Lighting in Oman," Energies, MDPI, vol. 14(22), pages 1-25, November.
    16. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    17. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    18. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    19. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
    20. Francesco Mancini & Benedetto Nastasi, 2019. "Energy Retrofitting Effects on the Energy Flexibility of Dwellings," Energies, MDPI, vol. 12(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.