IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6868-d1250249.html
   My bibliography  Save this article

Towards Social Understanding of Energy Storage Systems—A Perspective

Author

Listed:
  • Maurizio Sibilla

    (Centre for Architecture and Built Environment Research, University of West of England, Bristol BS16 1QY, UK)

  • Esra Kurul

    (School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

Abstract

Renewable, decentralised, and citizen-centred energy paradigms have emerged as feasible and reliable alternatives to the traditional centralised fossil-based infrastructure. In this scenario, energy storage systems (ESSs) are enabling technologies to boost the stability and flexibility of the power grid in the short-to-medium term, allowing local communities to envision energy autonomy in the medium term. Traditionally, ESSs have been installed in individual households for their own benefit. However, new storage paradigms focusing on building clusters and district scale have illustrated the need to revise the role of ESSs and to pay close attention to the social factors, while devising implementation strategies for scaling up these new energy infrastructural models. This study reviews recent research trends (2021–2023), proposing three integrated social pillars for the implementation of ESSs: (i) multi-dimensional geographical and institutional scales of ESSs; (ii) social components of spatial and temporal flexibility of ESSs; and (iii) co-creation approaches to devising ESS implementation strategies. These pillars point out the necessary social factors for the implementation of ESSs at scale, highlighting future research perspectives to operationalise such factors, with a particular focus on the importance of citizens’ perception, participation, and collaboration, which are critical for maximising the benefit of sharing and exchanging renewable energy locally. Development of flexible and agile digital platforms that facilitate the co-creation of adaptable socio-technical solutions to adopting ESSs is proposed. The need to tailor these solutions to suit the stakeholders’ capabilities is emphasized.

Suggested Citation

  • Maurizio Sibilla & Esra Kurul, 2023. "Towards Social Understanding of Energy Storage Systems—A Perspective," Energies, MDPI, vol. 16(19), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6868-:d:1250249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    2. Wu, Yunna & Zhang, Ting & Gao, Rui & Wu, Chenghao, 2021. "Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid," Applied Energy, Elsevier, vol. 287(C).
    3. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    4. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    5. Sai Sudharshan Ravi & Muhammad Aziz, 2022. "Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives," Energies, MDPI, vol. 15(2), pages 1-27, January.
    6. Michael Krug & Maria Rosaria Di Nucci & Matteo Caldera & Elena De Luca, 2022. "Mainstreaming Community Energy: Is the Renewable Energy Directive a Driver for Renewable Energy Communities in Germany and Italy?," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    7. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    8. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    9. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    10. Fang, Xichen & Guo, Hongye & Zhang, Xian & Wang, Xuanyuan & Chen, Qixin, 2022. "An efficient and incentive-compatible market design for energy storage participation," Applied Energy, Elsevier, vol. 311(C).
    11. Maurizio Sibilla & Fonbeyin Henry Abanda, 2022. "Multi-Criteria Decision Making Optimisation Framework for Positive Energy Blocks for Cities," Sustainability, MDPI, vol. 14(1), pages 1-20, January.
    12. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    13. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    14. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    15. Derkenbaeva, Erkinai & Halleck Vega, Solmaria & Hofstede, Gert Jan & van Leeuwen, Eveline, 2022. "Positive energy districts: Mainstreaming energy transition in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    17. Locatelli, Giorgio & Palerma, Emanuele & Mancini, Mauro, 2015. "Assessing the economics of large Energy Storage Plants with an optimisation methodology," Energy, Elsevier, vol. 83(C), pages 15-28.
    18. Thomas, Gareth & Demski, Christina & Pidgeon, Nick, 2019. "Deliberating the social acceptability of energy storage in the UK," Energy Policy, Elsevier, vol. 133(C).
    19. Rohit Trivedi & Sandipan Patra & Yousra Sidqi & Benjamin Bowler & Fiona Zimmermann & Geert Deconinck & Antonios Papaemmanouil & Shafi Khadem, 2022. "Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network," Energies, MDPI, vol. 15(3), pages 1-30, January.
    20. Ecker, Franz & Spada, Hans & Hahnel, Ulf J.J., 2018. "Independence without control: Autarky outperforms autonomy benefits in the adoption of private energy storage systems," Energy Policy, Elsevier, vol. 122(C), pages 214-228.
    21. Bögel, Paula Maria & Upham, Paul & Shahrokni, Hossein & Kordas, Olga, 2021. "What is needed for citizen-centered urban energy transitions: Insights on attitudes towards decentralized energy storage," Energy Policy, Elsevier, vol. 149(C).
    22. Peñaloza, Diego & Mata, Érika & Fransson, Nathalie & Fridén, Håkan & Samperio, Álvaro & Quijano, Ana & Cuneo, Alessandra, 2022. "Social and market acceptance of photovoltaic panels and heat pumps in Europe: A literature review and survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    23. Zhang, Hongyan & Gao, Shuaizhi & Zhou, Peng, 2023. "Role of digitalization in energy storage technological innovation: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    24. Krumm, Alexandra & Süsser, Diana & Blechinger, Philipp, 2022. "Modelling social aspects of the energy transition: What is the current representation of social factors in energy models?," Energy, Elsevier, vol. 239(PA).
    25. Komendantova, Nadejda & Neumueller, Sonata & Nkoana, Elvis, 2021. "Public attitudes, co-production and polycentric governance in energy policy," Energy Policy, Elsevier, vol. 153(C).
    26. Muche, Thomas, 2009. "A real option-based simulation model to evaluate investments in pump storage plants," Energy Policy, Elsevier, vol. 37(11), pages 4851-4862, November.
    27. Locatelli, Giorgio & Invernizzi, Diletta Colette & Mancini, Mauro, 2016. "Investment and risk appraisal in energy storage systems: A real options approach," Energy, Elsevier, vol. 104(C), pages 114-131.
    28. Ambrosio-Albala, P. & Upham, P. & Bale, C.S.E. & Taylor, P.G., 2020. "Exploring acceptance of decentralised energy storage at household and neighbourhood scales: A UK survey," Energy Policy, Elsevier, vol. 138(C).
    29. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Adewole, Ayooluwa & Shipworth, Michelle & Lemaire, Xavier & Sanderson, Danielle, 2023. "Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households," Energy Policy, Elsevier, vol. 174(C).
    3. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    4. Leila Aghlimoghadam & Sadegh Salehi & Hans-Liudger Dienel, 2022. "A Contribution to Social Acceptance of PV in an Oil-Rich Country: Reflections on Governmental Organisations in Iran," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    5. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    6. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    7. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Leila Aghlimoghadam, 2023. "Solar Business in an Oil-Rich Country? A Socio-Technical Investigation of Solar PV Businesses in Iran," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    10. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    11. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    12. Barbara Antonioli Mantegazzini & C?dric Clastres & Laura Wangen, 2022. "Energy communities in Europe: An overview of issues and regulatory and economic solutions," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 5-23.
    13. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    14. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    15. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).
    16. Jamali, Mohammad-Bagher & Rasti-Barzoki, Morteza & Khosroshahi, Hossein & Altmann, Jörn, 2022. "An evolutionary game-theoretic approach to study the technological transformation of the industrial sector toward renewable electricity procurement: A case study of Iran," Applied Energy, Elsevier, vol. 318(C).
    17. Kerscher, Selina & Koirala, Arpan & Arboleya, Pablo, 2024. "Grid-optimal energy community planning from a systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Locatelli, Giorgio & Invernizzi, Diletta Colette & Mancini, Mauro, 2016. "Investment and risk appraisal in energy storage systems: A real options approach," Energy, Elsevier, vol. 104(C), pages 114-131.
    19. Samiha Mjahed Hammami & Sahar Chtourou & Heyam Al Moosa, 2018. "A holistic approach to understanding the acceptance of a community‐based renewable energy project: A pathway to sustainability for Tunisia's rural region," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1535-1545, December.
    20. Batel, Susana, 2020. "Re-presenting the rural in the UK press: An exploration of the construction, contestation and negotiation of media discourses on the rural within post-carbon energy transitions," Energy Policy, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6868-:d:1250249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.