IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3723-d818958.html
   My bibliography  Save this article

Genetic Optimisation of a Free-Stream Water Wheel Using 2D Computational Fluid Dynamics Simulations Points towards Design with Fully Immersed Blades

Author

Listed:
  • Abhishekkumar Shingala

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Olivier Cleynen

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Aman Jain

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Stefan Hoerner

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

  • Dominique Thévenin

    (Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University Otto von Guericke of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany)

Abstract

A large-scale two-dimensional computational fluid dynamics study is conducted in order to maximise the power output and smoothness of power delivery of a free-stream water wheel, a low-impact hydropower device. Based on models and methods developed in previous research, the study uses a genetic algorithm to optimise the geometry of a wheel with a given radius and depth, maximising two objective functions simultaneously. After convergence and suitable post-processing, a single optimal design is identified, featuring eight shortened blades that become fully immersed at the nadir point. The design results in a 71% reduction in blade material and a 113% increase in the work ratio while improving the hydraulic power by 8% compared to the previous best design. These characteristics are applied retroactively to a broad family of designs, resulting in significant improvements in performance. Analysis of the resulting designs indicates that when either the hydraulic power coefficient, rotor power coefficient, or work ratio is considered, free-stream water wheels with fully immersed blades, whose power mechanisms are shown to rely on lift, as well as drag, outperform all other designs studied so far.

Suggested Citation

  • Abhishekkumar Shingala & Olivier Cleynen & Aman Jain & Stefan Hoerner & Dominique Thévenin, 2022. "Genetic Optimisation of a Free-Stream Water Wheel Using 2D Computational Fluid Dynamics Simulations Points towards Design with Fully Immersed Blades," Energies, MDPI, vol. 15(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3723-:d:818958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    2. Stefan Hoerner & Iring Kösters & Laure Vignal & Olivier Cleynen & Shokoofeh Abbaszadeh & Thierry Maître & Dominique Thévenin, 2021. "Cross-Flow Tidal Turbines with Highly Flexible Blades—Experimental Flow Field Investigations at Strong Fluid–Structure Interactions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Dennis Powalla & Stefan Hoerner & Olivier Cleynen & Nadine Müller & Jürgen Stamm & Dominique Thévenin, 2021. "A Computational Fluid Dynamics Model for a Water Vortex Power Plant as Platform for Etho- and Ecohydraulic Research," Energies, MDPI, vol. 14(3), pages 1-14, January.
    4. Nishi, Yasuyuki & Yahagi, Yuichiro & Okazaki, Takashi & Inagaki, Terumi, 2020. "Effect of flow rate on performance and flow field of an undershot cross-flow water turbine," Renewable Energy, Elsevier, vol. 149(C), pages 409-423.
    5. Cleynen, Olivier & Engel, Sebastian & Hoerner, Stefan & Thévenin, Dominique, 2021. "Optimal design for the free-stream water wheel: A two-dimensional study," Energy, Elsevier, vol. 214(C).
    6. Cleynen, Olivier & Kerikous, Emeel & Hoerner, Stefan & Thévenin, Dominique, 2018. "Characterization of the performance of a free-stream water wheel using computational fluid dynamics," Energy, Elsevier, vol. 165(PB), pages 1392-1400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viktor Sebestyén & Mátyás Horváth & Viola Somogyi & Endre Domokos & Róbert Koch, 2022. "Network-Analysis-Supported Design Aspects and Performance Optimization of Floating Water Wheels," Energies, MDPI, vol. 15(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cleynen, Olivier & Engel, Sebastian & Hoerner, Stefan & Thévenin, Dominique, 2021. "Optimal design for the free-stream water wheel: A two-dimensional study," Energy, Elsevier, vol. 214(C).
    2. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    3. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    4. Wu, Kuo-Tsai & Lo, Kuo-Hao & Kao, Ruey-Chy & Hwang, Sheng-Jye, 2023. "Design and performance analysis of a passive rotatable deflector diversion tail for tidal current power generation hydrokinetic turbines," Energy, Elsevier, vol. 283(C).
    5. Edirisinghe, Dylan S. & Yang, Ho-Seong & Gunawardane, S.D.G.S.P. & Alkhabbaz, Ali & Tongphong, Watchara & Yoon, Min & Lee, Young-Ho, 2023. "Numerical and experimental investigation on water vortex power plant to recover the energy from industrial wastewater," Renewable Energy, Elsevier, vol. 204(C), pages 617-634.
    6. Paul Brousseau & Mustapha Benaouicha & Sylvain Guillou, 2021. "Hydrodynamic Efficiency Analysis of a Flexible Hydrofoil Oscillating in a Moderate Reynolds Number Fluid Flow," Energies, MDPI, vol. 14(14), pages 1-19, July.
    7. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    8. Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
    9. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    10. Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Kisi, Ozgur, 2023. "Performance evaluation of the savonius hydrokinetic turbine using soft computing techniques," Renewable Energy, Elsevier, vol. 215(C).
    11. Kang, Can & Zhao, Hexiang & Zhang, Yongchao & Ding, Kejin, 2021. "Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor," Renewable Energy, Elsevier, vol. 172(C), pages 290-303.
    12. Edirisinghe, Dylan S. & Yang, Ho-Seong & Gunawardane, S.D.G.S.P. & Lee, Young-Ho, 2022. "Enhancing the performance of gravitational water vortex turbine by flow simulation analysis," Renewable Energy, Elsevier, vol. 194(C), pages 163-180.
    13. Olivier Cleynen & Dennis Powalla & Stefan Hoerner & Dominique Thévenin, 2022. "An Efficient Method for Computing the Power Potential of Bypass Hydropower Installations," Energies, MDPI, vol. 15(9), pages 1-13, April.
    14. Nosare Maika & Wenxian Lin & Mehdi Khatamifar, 2023. "A Review of Gravitational Water Vortex Hydro Turbine Systems for Hydropower Generation," Energies, MDPI, vol. 16(14), pages 1-39, July.
    15. Powalla, Dennis & Hoerner, Stefan & Cleynen, Olivier & Thévenin, Dominique, 2022. "A numerical approach for active fish behaviour modelling with a view toward hydropower plant assessment," Renewable Energy, Elsevier, vol. 188(C), pages 957-966.
    16. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    17. Abdelaziz, Khaled R. & Nawar, Mohamed A.A. & Ramadan, Ahmed & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Performance improvement of a Savonius turbine by using auxiliary blades," Energy, Elsevier, vol. 244(PA).
    18. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape of thick blades for a hydraulic Savonius turbine," Renewable Energy, Elsevier, vol. 134(C), pages 629-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3723-:d:818958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.