IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v234y2024ics0960148124012746.html
   My bibliography  Save this article

Techno-economic assessment of the dethridge waterwheel under sluice gates in a novel design for pico hydropower generation

Author

Listed:
  • Saber, Mohamed
  • Abdelall, Gamal
  • Ezzeldin, Riham
  • AbdelGawad, Ahmed Farouk
  • Ragab, Reda

Abstract

The world is increasingly shifting toward low-head hydropower as a sustainable form of renewable energy in response to the negative socioeconomic impacts of large hydroelectric plants. In this context, the article presents a novel design involving retrofitting the gates of existing dam structures with Dethridge waterwheel technology. This innovative solution installs the wheel under the gate to harvest the untapped potential energy resulting from the head difference at these already-existing facilities while simultaneously reducing the need for costly civil work and preventing new installations in freshwater systems. The El-Reah El-Tawfiqy barrage in Egypt served as the model case study for evaluating the implementation of the proposed design. According to the results, the plant's levelized cost is 29 USD/MWh, less expensive than traditional hydropower projects and achieves grid parity. With an estimated 140 MWh of electricity produced annually, the project is expected to cut around 1460 tons of CO2 equivalent over its 25-year lifespan. This study includes several novelties, including modifying hydraulic structure gates for pico power generation. Additionally, a thorough numerical analysis was performed to estimate the output power instead of relying on theoretical approaches for the economic viability study. These results can guide policymakers and stakeholders in implementing affordable and sustainable renewable energy solutions.

Suggested Citation

  • Saber, Mohamed & Abdelall, Gamal & Ezzeldin, Riham & AbdelGawad, Ahmed Farouk & Ragab, Reda, 2024. "Techno-economic assessment of the dethridge waterwheel under sluice gates in a novel design for pico hydropower generation," Renewable Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012746
    DOI: 10.1016/j.renene.2024.121206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pujol, T. & Montoro, L., 2010. "High hydraulic performance in horizontal waterwheels," Renewable Energy, Elsevier, vol. 35(11), pages 2543-2551.
    2. Hunt, Julian David & Jurasz, Jakub & Zakeri, Behnam & Nascimento, Andreas & Cross, Samuel & Caten, Carla Schwengber ten & de Jesus Pacheco, Diego Augusto & Pongpairoj, Pharima & Filho, Walter Leal & T, 2022. "Electric Truck Hydropower, a flexible solution to hydropower in mountainous regions," Energy, Elsevier, vol. 248(C).
    3. Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
    4. Purwanto, Widodo Wahyu & Afifah, Nok, 2016. "Assessing the impact of techno socioeconomic factors on sustainability indicators of microhydro power projects in Indonesia: A comparative study," Renewable Energy, Elsevier, vol. 93(C), pages 312-322.
    5. Loots, I. & van Dijk, M. & Barta, B. & van Vuuren, S.J. & Bhagwan, J.N., 2015. "A review of low head hydropower technologies and applications in a South African context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1254-1268.
    6. Cleynen, Olivier & Kerikous, Emeel & Hoerner, Stefan & Thévenin, Dominique, 2018. "Characterization of the performance of a free-stream water wheel using computational fluid dynamics," Energy, Elsevier, vol. 165(PB), pages 1392-1400.
    7. Pujol, T. & Vashisht, A.K. & Ricart, J. & Culubret, D. & Velayos, J., 2015. "Hydraulic efficiency of horizontal waterwheels: Laboratory data and CFD study for upgrading a western Himalayan watermill," Renewable Energy, Elsevier, vol. 83(C), pages 576-586.
    8. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    9. Paudel, Shakun & Saenger, Nicole, 2018. "Effect of channel geometry on the performance of the Dethridge water wheel," Renewable Energy, Elsevier, vol. 115(C), pages 175-182.
    10. Quaranta, Emanuele & Revelli, Roberto, 2015. "Output power and power losses estimation for an overshot water wheel," Renewable Energy, Elsevier, vol. 83(C), pages 979-987.
    11. Arash YoosefDoost & William David Lubitz, 2020. "Archimedes Screw Turbines: A Sustainable Development Solution for Green and Renewable Energy Generation—A Review of Potential and Design Procedures," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    12. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    13. Maher, P. & Smith, N.P.A. & Williams, A.A., 2003. "Assessment of pico hydro as an option for off-grid electrification in Kenya," Renewable Energy, Elsevier, vol. 28(9), pages 1357-1369.
    14. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    15. Quaranta, Emanuele & Revelli, Roberto, 2015. "Performance characteristics, power losses and mechanical power estimation for a breastshot water wheel," Energy, Elsevier, vol. 87(C), pages 315-325.
    16. Quaranta, E. & Revelli, R., 2016. "Optimization of breastshot water wheels performance using different inflow configurations," Renewable Energy, Elsevier, vol. 97(C), pages 243-251.
    17. Llamosas, Cecilia & Sovacool, Benjamin K., 2021. "The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    19. Azimov, Ulugbek & Avezova, Nilufar, 2022. "Sustainable small-scale hydropower solutions in Central Asian countries for local and cross-border energy/water supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Paudel, Shakun & Linton, Nick & Zanke, Ulrich C.E. & Saenger, Nicole, 2013. "Experimental investigation on the effect of channel width on flexible rubber blade water wheel performance," Renewable Energy, Elsevier, vol. 52(C), pages 1-7.
    21. Nishi, Yasuyuki & Yahagi, Yuichiro & Okazaki, Takashi & Inagaki, Terumi, 2020. "Effect of flow rate on performance and flow field of an undershot cross-flow water turbine," Renewable Energy, Elsevier, vol. 149(C), pages 409-423.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
    2. Nishi, Yasuyuki & Yahagi, Yuichiro & Okazaki, Takashi & Inagaki, Terumi, 2020. "Effect of flow rate on performance and flow field of an undershot cross-flow water turbine," Renewable Energy, Elsevier, vol. 149(C), pages 409-423.
    3. Muhammad Asim & Shoaib Muhammad & Muhammad Amjad & Muhammad Abdullah & M. A. Mujtaba & M. A. Kalam & Mohamed Mousa & Manzoore Elahi M. Soudagar, 2022. "Design and Parametric Optimization of the High-Speed Pico Waterwheel for Rural Electrification of Pakistan," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    4. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    5. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.
    6. Bilgili, Mehmet & Bilirgen, Harun & Ozbek, Arif & Ekinci, Firat & Demirdelen, Tugce, 2018. "The role of hydropower installations for sustainable energy development in Turkey and the world," Renewable Energy, Elsevier, vol. 126(C), pages 755-764.
    7. Cleynen, Olivier & Engel, Sebastian & Hoerner, Stefan & Thévenin, Dominique, 2021. "Optimal design for the free-stream water wheel: A two-dimensional study," Energy, Elsevier, vol. 214(C).
    8. Ludovic Cassan & Guilhem Dellinger & Pascal Maussion & Nicolas Dellinger, 2021. "Hydrostatic Pressure Wheel for Regulation of Open Channel Networks and for the Energy Supply of Isolated Sites," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    9. Paudel, Shakun & Saenger, Nicole, 2018. "Effect of channel geometry on the performance of the Dethridge water wheel," Renewable Energy, Elsevier, vol. 115(C), pages 175-182.
    10. Quaranta, E. & Revelli, R., 2016. "Optimization of breastshot water wheels performance using different inflow configurations," Renewable Energy, Elsevier, vol. 97(C), pages 243-251.
    11. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    13. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    14. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    15. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Parametric study on the sensitivity and influence of axial and radial clearance on the performance of a positive displacement hydraulic turbine," Energy, Elsevier, vol. 201(C).
    16. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    17. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    18. Cleynen, Olivier & Kerikous, Emeel & Hoerner, Stefan & Thévenin, Dominique, 2018. "Characterization of the performance of a free-stream water wheel using computational fluid dynamics," Energy, Elsevier, vol. 165(PB), pages 1392-1400.
    19. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    20. Qian, Zhongdong & Wang, Fan & Guo, Zhiwei & Lu, Jie, 2016. "Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode," Renewable Energy, Elsevier, vol. 99(C), pages 1146-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.