IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp163-180.html
   My bibliography  Save this article

Enhancing the performance of gravitational water vortex turbine by flow simulation analysis

Author

Listed:
  • Edirisinghe, Dylan S.
  • Yang, Ho-Seong
  • Gunawardane, S.D.G.S.P.
  • Lee, Young-Ho

Abstract

Gravitational Water Vortex Power (GWVP) plant is a favourable micro-hydro extraction method due to its simplicity and compatibility with ultra-low hydraulic head applications. However, the GWVP turbines are less efficient than other commercial hydro turbines. This study mainly focuses on improving the performance of the vortex turbine setup inside a conical basin structure using Computational Fluid Dynamic (CFD) analysis for different configurations of vortex turbine blades. After validating the ANSYS CFX CFD setup with available experimental results, the parametric study of the turbine was carried out based on four parameters; blade inclination, turbine height, vertical twist and horizontal curvature. The relationship between flow behaviour and performance was analysed in each case, considering the air-water interface, pressure and velocity fields. The blade inclination, similar to the conical basin inclination, yielded enhanced performance, and an optimal blade height was identified for this setup. The horizontally curved blade showed a slightly better performance than the vertical twist blade for the original design of the conical basin. However, when the drain diameter of the basin structure has increased, the performance of the vertically twisted blade showed good performance resulting in 55.3% efficiency while maintaining a stable air core.

Suggested Citation

  • Edirisinghe, Dylan S. & Yang, Ho-Seong & Gunawardane, S.D.G.S.P. & Lee, Young-Ho, 2022. "Enhancing the performance of gravitational water vortex turbine by flow simulation analysis," Renewable Energy, Elsevier, vol. 194(C), pages 163-180.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:163-180
    DOI: 10.1016/j.renene.2022.05.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, An & Wang, Yongshuai & Tang, Qinghong & Lv, Ruirui & Yang, Zhongpo, 2021. "Investigation of the vortex evolution and hydraulic excitation in a pump-turbine operating at different conditions," Renewable Energy, Elsevier, vol. 171(C), pages 462-478.
    2. Nishi, Yasuyuki & Suzuo, Ryouta & Sukemori, Daichi & Inagaki, Terumi, 2020. "Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance," Renewable Energy, Elsevier, vol. 155(C), pages 1103-1117.
    3. Tayyab, Muhammad & Cheema, Taqi Ahmad & Malik, Muhammad Sohail & Muzaffar, Atif & Sajid, Muhammad Bilal & Park, Cheol Woo, 2020. "Investigation of thermal energy exchange potential of a gravitational water vortex," Renewable Energy, Elsevier, vol. 162(C), pages 1380-1398.
    4. Dennis Powalla & Stefan Hoerner & Olivier Cleynen & Nadine Müller & Jürgen Stamm & Dominique Thévenin, 2021. "A Computational Fluid Dynamics Model for a Water Vortex Power Plant as Platform for Etho- and Ecohydraulic Research," Energies, MDPI, vol. 14(3), pages 1-14, January.
    5. Ullah, Rizwan & Cheema, Taqi Ahmad & Saleem, Abdul Samad & Ahmad, Sarvat Mushtaq & Chattha, Javed Ahmad & Park, Cheol Woo, 2020. "Preliminary experimental study on multi-stage gravitational water vortex turbine in a conical basin," Renewable Energy, Elsevier, vol. 145(C), pages 2516-2529.
    6. Dhakal, Sagar & Timilsina, Ashesh B. & Dhakal, Rabin & Fuyal, Dinesh & Bajracharya, Tri R. & Pandit, Hari P. & Amatya, Nagendra & Nakarmi, Amrit M., 2015. "Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 662-669.
    7. Byman Hamududu & Aanund Killingtveit, 2012. "Assessing Climate Change Impacts on Global Hydropower," Energies, MDPI, vol. 5(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Velásquez, Laura & Romero-Menco, Fredys & Rubio-Clemente, Ainhoa & Posada, Alejandro & Chica, Edwin, 2024. "Numerical optimization and experimental validation of the runner of a gravitational water vortex hydraulic turbine with a spiral inlet channel and a conical basin," Renewable Energy, Elsevier, vol. 220(C).
    2. Shamsuddeen, Mohamed Murshid & Ma, Sang-Bum & Park, No-Hyun & Kim, Kyung Min & Kim, Jin-Hyuk, 2023. "Design analysis and optimization of a hydraulic gate turbine for power production from ultra-low head sites," Energy, Elsevier, vol. 275(C).
    3. Nosare Maika & Wenxian Lin & Mehdi Khatamifar, 2023. "A Review of Gravitational Water Vortex Hydro Turbine Systems for Hydropower Generation," Energies, MDPI, vol. 16(14), pages 1-39, July.
    4. Edirisinghe, Dylan S. & Yang, Ho-Seong & Gunawardane, S.D.G.S.P. & Alkhabbaz, Ali & Tongphong, Watchara & Yoon, Min & Lee, Young-Ho, 2023. "Numerical and experimental investigation on water vortex power plant to recover the energy from industrial wastewater," Renewable Energy, Elsevier, vol. 204(C), pages 617-634.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nosare Maika & Wenxian Lin & Mehdi Khatamifar, 2023. "A Review of Gravitational Water Vortex Hydro Turbine Systems for Hydropower Generation," Energies, MDPI, vol. 16(14), pages 1-39, July.
    2. Saleem, Abdul Samad & Cheema, Taqi Ahmad & Ullah, Rizwan & Ahmad, Sarvat Mushtaq & Chattha, Javed Ahmad & Akbar, Bilal & Park, Cheol Woo, 2020. "Parametric study of single-stage gravitational water vortex turbine with cylindrical basin," Energy, Elsevier, vol. 200(C).
    3. Nishi, Yasuyuki & Suzuo, Ryouta & Sukemori, Daichi & Inagaki, Terumi, 2020. "Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance," Renewable Energy, Elsevier, vol. 155(C), pages 1103-1117.
    4. Velásquez, Laura & Romero-Menco, Fredys & Rubio-Clemente, Ainhoa & Posada, Alejandro & Chica, Edwin, 2024. "Numerical optimization and experimental validation of the runner of a gravitational water vortex hydraulic turbine with a spiral inlet channel and a conical basin," Renewable Energy, Elsevier, vol. 220(C).
    5. Edirisinghe, Dylan S. & Yang, Ho-Seong & Gunawardane, S.D.G.S.P. & Alkhabbaz, Ali & Tongphong, Watchara & Yoon, Min & Lee, Young-Ho, 2023. "Numerical and experimental investigation on water vortex power plant to recover the energy from industrial wastewater," Renewable Energy, Elsevier, vol. 204(C), pages 617-634.
    6. Velásquez, Laura & Posada, Alejandro & Chica, Edwin, 2022. "Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology," Renewable Energy, Elsevier, vol. 187(C), pages 508-521.
    7. Piyawat Sritram & Ratchaphon Suntivarakorn, 2021. "The Efficiency Comparison of Hydro Turbines for Micro Power Plant from Free Vortex," Energies, MDPI, vol. 14(23), pages 1-13, November.
    8. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    9. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    10. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    11. Valentina Sessa & Edi Assoumou & Mireille Bossy & Sofia G. Simões, 2021. "Analyzing the Applicability of Random Forest-Based Models for the Forecast of Run-of-River Hydropower Generation," Clean Technol., MDPI, vol. 3(4), pages 1-23, December.
    12. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    13. He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
    14. Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Dariusz Młyński, 2022. "Investigation of the Effect of Climate Change on Energy Produced by Hydroelectric Power Plants (HEPPs) by Trend Analysis Method: A Case Study for Dogancay I–II HEPPs," Energies, MDPI, vol. 15(7), pages 1-17, March.
    15. Yu, An & Li, Longwei & Ji, Jingjing & Tang, Qinghong, 2022. "Numerical study on the energy evaluation characteristics in a pump turbine based on the thermodynamic entropy theory," Renewable Energy, Elsevier, vol. 195(C), pages 766-779.
    16. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2019. "The role of glacier retreat for Swiss hydropower production," Renewable Energy, Elsevier, vol. 132(C), pages 615-627.
    17. Hennig, Thomas, 2016. "Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1232-1246.
    18. Juan A. A–el & Mohcine Bakhat & Xavier Labandeira, 2013. "Hydrological management of a heavily dammed river basin: the Mi–o-Sil," Working Papers 03-2014, Economics for Energy.
    19. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    20. Solomon Gebre & Netra Timalsina & Knut Alfredsen, 2014. "Some Aspects of Ice-Hydropower Interaction in a Changing Climate," Energies, MDPI, vol. 7(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:163-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.