IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013228.html
   My bibliography  Save this article

Fish injury analysis and flip-blade type optimization design of an undershot waterwheel

Author

Listed:
  • Yang, Chunxia
  • Li, Qian
  • Hu, Xueyuan
  • Zheng, Yuan
  • Wu, Jiawei
  • Su, Shengzhi
  • Yu, An

Abstract

In this study, the performance of the ultra-low head undershot fixed-blade and flip-blade waterwheels are studied via numerical simulations to evaluate their efficiency and stability. On the other hand, the accuracy of the numerical simulation of the fixed-blade waterwheel is verified by field tests before the flip-blade waterwheel is designed on its basis. Moreover, the likelihood of fish injury in the fixed-blade waterwheel is predicted to evaluate the fish-friendliness of the waterwheel. Applying the overset grid algorithm, the results indicate that the fish is most vulnerable to damage in the rotor area and that the fish suffer some impact damage but almost no pressure and shear stress damage, and a minimal probability of mortality present, confirming that the waterwheel is fish friendly. Furthermore, the power coefficient of the waterwheel with the rise of tip speed ratio tends to increase first and then decrease, while maintaining a positive correlation with the immersion depth within a certain range. Additionally, flip-blade owns higher efficiency than fixed-blade waterwheel under the same working conditions but is slightly less stable. We expect that these results will help establish design guidelines for more efficient flip-blade waterwheels to break the impression that traditional undershot waterwheels are less efficient.

Suggested Citation

  • Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013228
    DOI: 10.1016/j.renene.2023.119407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zangiabadi, E. & Masters, I. & Williams, Alison J. & Croft, T.N. & Malki, R. & Edmunds, M. & Mason-Jones, A. & Horsfall, I., 2017. "Computational prediction of pressure change in the vicinity of tidal stream turbines and the consequences for fish survival rate," Renewable Energy, Elsevier, vol. 101(C), pages 1141-1156.
    2. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    3. Maher, P. & Smith, N.P.A. & Williams, A.A., 2003. "Assessment of pico hydro as an option for off-grid electrification in Kenya," Renewable Energy, Elsevier, vol. 28(9), pages 1357-1369.
    4. Quaranta, Emanuele & Revelli, Roberto, 2015. "Performance characteristics, power losses and mechanical power estimation for a breastshot water wheel," Energy, Elsevier, vol. 87(C), pages 315-325.
    5. Romero-Gomez, Pedro & Richmond, Marshall C., 2014. "Simulating blade-strike on fish passing through marine hydrokinetic turbines," Renewable Energy, Elsevier, vol. 71(C), pages 401-413.
    6. Deng, Zhiqun & Carlson, Thomas J. & Ploskey, Gene R. & Richmond, Marshall C. & Dauble, Dennis D., 2007. "Evaluation of blade-strike models for estimating the biological performance of Kaplan turbines," Ecological Modelling, Elsevier, vol. 208(2), pages 165-176.
    7. Cleynen, Olivier & Kerikous, Emeel & Hoerner, Stefan & Thévenin, Dominique, 2018. "Characterization of the performance of a free-stream water wheel using computational fluid dynamics," Energy, Elsevier, vol. 165(PB), pages 1392-1400.
    8. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    9. Paudel, Shakun & Linton, Nick & Zanke, Ulrich C.E. & Saenger, Nicole, 2013. "Experimental investigation on the effect of channel width on flexible rubber blade water wheel performance," Renewable Energy, Elsevier, vol. 52(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klopries, Elena-Maria & Schüttrumpf, Holger, 2020. "Mortality assessment for adult European eels (Anguilla Anguilla) during turbine passage using CFD modelling," Renewable Energy, Elsevier, vol. 147(P1), pages 1481-1490.
    2. Cleynen, Olivier & Engel, Sebastian & Hoerner, Stefan & Thévenin, Dominique, 2021. "Optimal design for the free-stream water wheel: A two-dimensional study," Energy, Elsevier, vol. 214(C).
    3. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    4. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    5. Paudel, Shakun & Saenger, Nicole, 2018. "Effect of channel geometry on the performance of the Dethridge water wheel," Renewable Energy, Elsevier, vol. 115(C), pages 175-182.
    6. Quaranta, E. & Revelli, R., 2016. "Optimization of breastshot water wheels performance using different inflow configurations," Renewable Energy, Elsevier, vol. 97(C), pages 243-251.
    7. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    8. Nishi, Yasuyuki & Yahagi, Yuichiro & Okazaki, Takashi & Inagaki, Terumi, 2020. "Effect of flow rate on performance and flow field of an undershot cross-flow water turbine," Renewable Energy, Elsevier, vol. 149(C), pages 409-423.
    9. Muhammad Asim & Shoaib Muhammad & Muhammad Amjad & Muhammad Abdullah & M. A. Mujtaba & M. A. Kalam & Mohamed Mousa & Manzoore Elahi M. Soudagar, 2022. "Design and Parametric Optimization of the High-Speed Pico Waterwheel for Rural Electrification of Pakistan," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    10. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.
    11. Viktor Sebestyén & Mátyás Horváth & Viola Somogyi & Endre Domokos & Róbert Koch, 2022. "Network-Analysis-Supported Design Aspects and Performance Optimization of Floating Water Wheels," Energies, MDPI, vol. 15(18), pages 1-12, September.
    12. Rossington, Kate & Benson, Thomas, 2020. "An agent-based model to predict fish collisions with tidal stream turbines," Renewable Energy, Elsevier, vol. 151(C), pages 1220-1229.
    13. Bilgili, Mehmet & Bilirgen, Harun & Ozbek, Arif & Ekinci, Firat & Demirdelen, Tugce, 2018. "The role of hydropower installations for sustainable energy development in Turkey and the world," Renewable Energy, Elsevier, vol. 126(C), pages 755-764.
    14. Lahimer, A.A. & Alghoul, M.A. & Sopian, K. & Amin, Nowshad & Asim, Nilofar & Fadhel, M.I., 2012. "Research and development aspects of pico-hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5861-5878.
    15. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    16. Zhang, Zhi & Zhang, Yuquan & Zheng, Yuan & Zhang, Jisheng & Fernandez-Rodriguez, Emmanuel & Zang, Wei & Ji, Renwei, 2023. "Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction," Energy, Elsevier, vol. 264(C).
    17. Shen, Haixue & Zydlewski, Gayle Barbin & Viehman, Haley A. & Staines, Garrett, 2016. "Estimating the probability of fish encountering a marine hydrokinetic device," Renewable Energy, Elsevier, vol. 97(C), pages 746-756.
    18. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    19. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    20. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.