IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5058-d860259.html
   My bibliography  Save this article

The Laminar Burning Velocities of Stoichiometric Methane–Air Mixture from Closed Vessels Measurements

Author

Listed:
  • Maria Mitu

    (“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania)

  • Codina Movileanu

    (“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania)

  • Venera Giurcan

    (“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania)

Abstract

The present work aims to evaluate the performance of the constant-volume method by several sets of experiments carried out in three different closed vessels (a sphere and two cylinders) analyzing the obtained results in order to obtain accurate laminar burning velocities. Accurate laminar burning velocities can be used in the development of computational fluid dynamics models in order to design new internal combustion engines with a higher efficiency and lower fuel consumption leading to a lower degree of environmental pollution. The pressure-time histories obtained at various initial pressures from 0.4 to 1.4 bar and ambient initial temperature were analyzed and processed using two different correlations (one implying the cubic low coefficient and the other implying the burnt mass fraction). The laminar burning velocities obtained at various initial pressures are necessary for the realization of a complete kinetic study regarding the combustion reaction and testing the actual reaction mechanisms. Data obtained from measurements were completed and compared with data obtained from runs using two different detailed chemical kinetic mechanisms (GRI 3.0 and Warnatz) and with laminar burning velocities from literature. Our experimental burning velocities ranging from 35.3 cm/s (data from spherical vessel S obtained using the burnt mass fraction) to 37.5 cm/s (data from cylindrical vessel C1 obtained using the cubic law) are inside the interval of confidence as reported by other researchers. From the dependence of the laminar burning velocity on the initial pressure, the baric coefficients were obtained. These coefficients were further used to obtain the overall reaction orders. The baric coefficients (ranging between −0.349 and −0.212) and the overall reaction orders (ranging between 1.42 and 1.50) obtained in this study fall within the reference range of data specific to methane–air mixtures examined at ambient initial temperature.

Suggested Citation

  • Maria Mitu & Codina Movileanu & Venera Giurcan, 2022. "The Laminar Burning Velocities of Stoichiometric Methane–Air Mixture from Closed Vessels Measurements," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5058-:d:860259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miriam Reyes & Rosaura Sastre & Blanca Giménez & Clara Sesma, 2022. "Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures," Energies, MDPI, vol. 15(10), pages 1-20, May.
    2. Minh Tien Nguyen & Van Van Luong & Quoc Thai Pham & Minh Tung Phung & Phu Nguu Do, 2022. "Effect of Ignition Energy and Hydrogen Addition on Laminar Flame Speed, Ignition Delay Time, and Flame Rising Time of Lean Methane/Air Mixtures," Energies, MDPI, vol. 15(5), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Drost & Sven Eckart & Chunkan Yu & Robert Schießl & Hartmut Krause & Ulrich Maas, 2023. "Numerical and Experimental Investigations of CH 4 /H 2 Mixtures: Ignition Delay Times, Laminar Burning Velocity and Extinction Limits," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5058-:d:860259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.