IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics0360544223010010.html
   My bibliography  Save this article

Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions

Author

Listed:
  • Liu, Guilong
  • Wang, Jian
  • Zheng, Ligang
  • Pan, Rongkun
  • Lu, Chang
  • Wang, Yan
  • Zhao, Yongxian
  • Li, Yanjie

Abstract

To estimate the hazard of explosion during hydrogen/methane gas transportation, the experiments were conducted in a small-scale duct. It studied the effect of hydrogen fraction and equivalent ratio distribution on flame propagation characteristics and pressure characteristics. It showed that the flame propagation process can be divided into steady-state and broken-state. During the steady-state, the addition of hydrogen will accelerate the evolution of the flame structure, leading to a reduction in the observed flame structure patterns. And the pressure transferred from bimodal to unimodal distribution. When entering the broken-state, a secondary explosion occurred. Then the flame propagation velocity started to increase dramatically and emitted a dazzling white light. This secondary explosion is more dangerous and significantly influenced by the equivalence ratio of duct A (φA) where the ignition source is located. Therefore, it was calculated the parameters of laminar combustion of φA, and the variation of key radicals was analyzed. Finally, the fitted equations of the maximum flame propagation speed (Vmax) and the maximum explosion pressure (Pmax) with laminar burning velocity (SL) were obtained. It was found that the growth rate of Vmax gradually decreased with increasing SL, while the growth rate of Pmax gradually increased.

Suggested Citation

  • Liu, Guilong & Wang, Jian & Zheng, Ligang & Pan, Rongkun & Lu, Chang & Wang, Yan & Zhao, Yongxian & Li, Yanjie, 2023. "Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223010010
    DOI: 10.1016/j.energy.2023.127607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    2. Ye, Congliang & Zhang, Qi, 2022. "Chain explosion behaviors induced by discontinuous methane/air distribution," Energy, Elsevier, vol. 252(C).
    3. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    4. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    5. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    6. Zheng, Kai & Wu, Qifen & Chen, Chuandong & Xing, Zhixiang & Hao, Yongmei & Yu, Minggao, 2022. "Explosion behavior of non-uniform methane/air mixture in an obstructed duct with different blockage ratios," Energy, Elsevier, vol. 255(C).
    7. Sun, Xuxu & Lu, Shouxiang, 2020. "On the mechanisms of flame propagation in methane-air mixtures with concentration gradient," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yawei & Fan, Rujia & Wang, Zhirong & Cao, Xingyan & Guo, Wenjie, 2024. "The influence of hydrogen concentration on the characteristic of explosion venting: Explosion pressure, venting flame and flow field microstructure," Energy, Elsevier, vol. 293(C).
    2. Yang, Ke & Liu, Guangyu & Ji, Hong & Xing, Zhixiang & Jiang, Juncheng & Yin, Yixuan, 2024. "The effects of different equivalence ratios and initial pressures on the explosion of methane/air premixed gas in closed space," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qifen & Han, Shixin & Yu, Minggao & Zheng, Kai & Li, Haitao & Feng, Shan, 2024. "Effect of the opening scale of the obstacle plate on the flame behavior of non-uniform and uniform combustible gases," Energy, Elsevier, vol. 296(C).
    2. Bingang Guo & Jianfeng Gao & Bin Hao & Bingjian Ai & Bingyuan Hong & Xinsheng Jiang, 2022. "Experimental and Numerical Study on the Explosion Dynamics of the Non-Uniform Liquefied Petroleum Gas and Air Mixture in a Channel with Mixed Obstacles," Energies, MDPI, vol. 15(21), pages 1-16, October.
    3. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    4. Yang, Ke & Liu, Guangyu & Ji, Hong & Xing, Zhixiang & Jiang, Juncheng & Yin, Yixuan, 2024. "The effects of different equivalence ratios and initial pressures on the explosion of methane/air premixed gas in closed space," Energy, Elsevier, vol. 297(C).
    5. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    6. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    7. Li, Jianwei & Liu, Jie & Wang, Tianci & Zou, Weitao & Yang, Qingqing & Shen, Jun, 2024. "Analysis of the evolution characteristics of hydrogen leakage and diffusion in a temperature stratified environment," Energy, Elsevier, vol. 293(C).
    8. Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).
    9. Wu, Qifen & Han, Shixin & Li, Shanshan & Yu, Minggao & Zheng, Kai & Li, Haitao & Pei, Bei & Wen, Xiaoping, 2023. "Explosive characteristics of non-uniform methane-air mixtures in half-open vertical channels with ignition at the open end," Energy, Elsevier, vol. 284(C).
    10. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    11. Miriam Reyes & Rosaura Sastre & Blanca Giménez & Clara Sesma, 2022. "Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures," Energies, MDPI, vol. 15(10), pages 1-20, May.
    12. Wenhao Tan & Longxi Zheng & Jie Lu & Lingyi Wang & Daoen Zhou, 2022. "Experimental Investigations on Detonation Initiation Characteristics of a Liquid-Fueled Pulse Detonation Combustor at Different Inlet Air Temperatures," Energies, MDPI, vol. 15(23), pages 1-16, December.
    13. Yang, Ke & Chen, Shujia & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Zheng, Kai & Jiang, Juncheng, 2023. "Experimental study on the coupling effect of heptafluoropropane and obstacles with different slits on the methane-air explosion," Energy, Elsevier, vol. 269(C).
    14. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    15. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).
    16. Qi, Chang & Lv, Xianshu & Wang, Yalei & Wu, Chuandong & Chen, Lei & Yan, Xingqing & Yu, Jianliang, 2023. "Effects of ethylene addition and dilution on the explosion characteristics of ethane-ethylene mixtures," Energy, Elsevier, vol. 280(C).
    17. Qi, Chang & Ding, Jianfei & Wang, Yue & Ning, Ye & Wang, Yalei & Liang, He & Yan, Xingqing & Yu, Jianliang, 2023. "Investigation of the upper flammability limit of ethylene/propane mixtures in air at high temperatures and pressures," Energy, Elsevier, vol. 281(C).
    18. Zhou, Shangyong & Gao, Jiancun & Luo, Zhenmin & Hu, Shoutao & Wang, Le & Wang, Tao, 2022. "Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism," Energy, Elsevier, vol. 239(PC).
    19. Yuan, Bihe & He, Yunlong & Chen, Xianfeng & Ding, Qingquan & Tang, Yi & Zhang, Yuduo & Li, Yi & Zhao, Qi & Huang, Chuyuan & Fang, Quan & Wang, Liancong & Jin, Hang, 2022. "Flame and shock wave evolution characteristics of methane explosion in a closed horizontal pipeline filled with a three-dimensional mesh porous material," Energy, Elsevier, vol. 260(C).
    20. Jianfeng Gao & Bingjian Ai & Bin Hao & Bingang Guo & Bingyuan Hong & Xinsheng Jiang, 2022. "Effect of Obstacles Gradient Arrangement on Non-Uniformly Distributed LPG–Air Premixed Gas Deflagration," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223010010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.