IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics036054422301441x.html
   My bibliography  Save this article

Effects of ethylene addition and dilution on the explosion characteristics of ethane-ethylene mixtures

Author

Listed:
  • Qi, Chang
  • Lv, Xianshu
  • Wang, Yalei
  • Wu, Chuandong
  • Chen, Lei
  • Yan, Xingqing
  • Yu, Jianliang

Abstract

The properties of an ethane-ethylene mixture were analyzed under varying equivalence ratios (ranging from 0.58 to 1.4) and ethylene volume fractions (ranging from 0% to 100%) with varying dilution ratios, using a 20-liter apparatus. The study aimed to understand the explosion characteristics of the mixture and to identify the elementary reactions that have the most significant impact on the rise in pressure and ethylene consumption during the explosion process. The results showed that adding ethylene increases the maximum explosion pressure and broadens the flammability limit range. In addition, the work investigated the effects of diluting the mixture with either nitrogen or carbon dioxide. It was found that carbon dioxide has a higher specific heat capacity compared to nitrogen, which enhances the heat absorption capacity of the mixture. The collision of carbon dioxide molecules with the activated radicals in the reaction transfers energy from the radicals to carbon dioxide, reducing the radicals' activity and causing a more significant dilution effect than nitrogen. Finally, a chemical kinetics analysis of the premixed gas using the UC San Diego mechanism revealed that the production rate of key free radicals gradually increases with the addition of ethylene, enhancing the explosion reaction intensity.

Suggested Citation

  • Qi, Chang & Lv, Xianshu & Wang, Yalei & Wu, Chuandong & Chen, Lei & Yan, Xingqing & Yu, Jianliang, 2023. "Effects of ethylene addition and dilution on the explosion characteristics of ethane-ethylene mixtures," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s036054422301441x
    DOI: 10.1016/j.energy.2023.128047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301441X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xi & Yang, Zhao & Wang, Xiaoming & Lin, Yulong, 2013. "Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150)," Energy, Elsevier, vol. 52(C), pages 185-191.
    2. Li, Zhenming & Gong, Maoqiong & Sun, Eryan & Wu, Jianfeng & Zhou, Yuan, 2011. "Effect of low temperature on the flammability limits of methane/nitrogen mixtures," Energy, Elsevier, vol. 36(9), pages 5521-5524.
    3. Wang, Tao & Luo, Zhenmin & Wen, Hu & Cheng, Fangming & Liu, Litao & Su, Yang & Liu, Changchun & Zhao, Jingyu & Deng, Jun & Yu, Minggao, 2021. "The explosion enhancement of methane-air mixtures by ethylene in a confined chamber," Energy, Elsevier, vol. 214(C).
    4. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Chang & Ding, Jianfei & Wang, Yue & Ning, Ye & Wang, Yalei & Liang, He & Yan, Xingqing & Yu, Jianliang, 2023. "Investigation of the upper flammability limit of ethylene/propane mixtures in air at high temperatures and pressures," Energy, Elsevier, vol. 281(C).
    2. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    3. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    4. Tian, Hua & Liu, Yuewei & Shu, Gequn & Li, Linqing & Huo, Xu, 2019. "Theoretical and experimental research on the influence of initial temperature on the flammability of hydrocarbon-CO2 mixture using in organic Rankine cycle," Energy, Elsevier, vol. 167(C), pages 939-949.
    5. Zhou, Shangyong & Gao, Jiancun & Luo, Zhenmin & Hu, Shoutao & Wang, Le & Wang, Tao, 2022. "Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism," Energy, Elsevier, vol. 239(PC).
    6. Feng, Biao & Yang, Zhao & Zhai, Rui, 2017. "Experimental research on the concentration characteristics of R32 and R161′ combustion product HF," Energy, Elsevier, vol. 125(C), pages 671-680.
    7. Wu, Xi & Yang, Zhao & Wang, Xiaoming & Lin, Yulong, 2013. "Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150)," Energy, Elsevier, vol. 52(C), pages 185-191.
    8. Zheng, Shizhuo & Zhang, Xin & Wang, Tao & Liu, Jie, 2015. "An experimental study on premixed laminar and turbulent combustion of synthesized coalbed methane," Energy, Elsevier, vol. 92(P3), pages 355-364.
    9. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    10. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    11. Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
    12. Jing, Qi & Wang, Dan & Shi, Congling, 2023. "Effects of aluminum powder additives on deflagration and detonation performance of JP-10/DEE mixed fuel under weak and strong ignition conditions," Applied Energy, Elsevier, vol. 331(C).
    13. Dai, Huaming & Yin, Hepeng & Zhai, Cheng, 2022. "Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate," Energy, Elsevier, vol. 261(PA).
    14. Mendiburu, Andrés Z. & de Carvalho, João A. & Coronado, Christian R. & Roberts, Justo J., 2017. "Flammability limits temperature dependence of pure compounds in air at atmospheric pressure," Energy, Elsevier, vol. 118(C), pages 414-424.
    15. Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).
    16. Yang, Xufeng & Liu, Changlin & Yu, Minggao & Han, Shixin & Yang, Wen, 2023. "Explosion characteristics of shale gas in air," Energy, Elsevier, vol. 278(C).
    17. Wu, Qifen & Han, Shixin & Yu, Minggao & Zheng, Kai & Li, Haitao & Feng, Shan, 2024. "Effect of the opening scale of the obstacle plate on the flame behavior of non-uniform and uniform combustible gases," Energy, Elsevier, vol. 296(C).
    18. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    19. Ye, Congliang & Zhang, Qi, 2022. "Chain explosion behaviors induced by discontinuous methane/air distribution," Energy, Elsevier, vol. 252(C).
    20. Miriam Reyes & Rosaura Sastre & Blanca Giménez & Clara Sesma, 2022. "Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures," Energies, MDPI, vol. 15(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s036054422301441x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.