IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p241-d714501.html
   My bibliography  Save this article

A Constant-Pressure Hydraulic PTO System for a Wave Energy Converter Based on a Hydraulic Transformer and Multi-Chamber Cylinder

Author

Listed:
  • Chenglong Li

    (Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Dahai Zhang

    (Ocean College, Zhejiang University, Zhoushan 316021, China
    State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    Hainan Institute, Zhejiang University, Sanya 572025, China
    The Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Zhoushan 316021, China)

  • Weijie Zhang

    (Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Xiaodong Liu

    (Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Ming Tan

    (Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Yulin Si

    (Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Peng Qian

    (Ocean College, Zhejiang University, Zhoushan 316021, China
    Shenzhen Institute, Zhejiang University, Shenzhen 518000, China)

Abstract

This paper presents a constant-pressure hydraulic PTO system that can convert stored pressure energy into electrical energy at a stable speed through hydraulic motors and generators. A multi-chamber cylinder can be connected to the main power generation circuit by check valves, and the motor displacement can be controlled by a fuzzy controller to maintain the main power generation circuit under stable pressure. The hydraulic transformer can control the forces applied to the floater. The hydrodynamic parameters of the floater are calculated by AQWA, and the optimal PTO damping of the hydraulic system is analyzed as the target of transformer control. MATLAB/Simulink and AMESim are used to carry out the co-simulation. Three kinds of wave elevation time-series for the specific state are designed for the simulation. In the co-simulation, three approaches are carried out for the simulation including no control strategy, fuzzy control with a fixed transformer ratio, and fuzzy control with a variable transformer ratio. Under the fuzzy control with a fixed transformer ratio, the floater displacement and captured energy do not increase significantly, but the oil pressure fluctuation is very stable, which indicates that the fuzzy controller maintains the stability of the main power circuit. While under fuzzy control with a variable transformer ratio, the power generation is not larger than those under no control strategy or fuzzy control with a fixed transformer ratio, which proves that this hydraulic transformer concept is less efficient.

Suggested Citation

  • Chenglong Li & Dahai Zhang & Weijie Zhang & Xiaodong Liu & Ming Tan & Yulin Si & Peng Qian, 2021. "A Constant-Pressure Hydraulic PTO System for a Wave Energy Converter Based on a Hydraulic Transformer and Multi-Chamber Cylinder," Energies, MDPI, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:241-:d:714501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    2. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    3. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yubo Niu & Xingyuan Gu & Xuhui Yue & Yang Zheng & Peijie He & Qijuan Chen, 2022. "Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-15, February.
    2. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
    3. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    4. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    5. Luana Gurnari & Pasquale G. F. Filianoti & Marco Torresi & Sergio M. Camporeale, 2020. "The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device," Energies, MDPI, vol. 13(1), pages 1-25, January.
    6. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    7. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    8. Wang, Kunlin & Wang, Zhe & Sheng, Songwei & Zhang, Yaqun & Wang, Zhenpeng & Ye, Yin & Wang, Wensheng & Lin, Hongjun & Huang, Zhenxin, 2023. "A method for large-scale WEC connecting to island isolated microgrid based on multiple small power HPGSs," Renewable Energy, Elsevier, vol. 218(C).
    9. Wei, Zhiwen & Shi, Hongda & Cao, Feifei & Yu, Mingqi & Li, Ming & Chen, Zhen & Liu, Peng, 2024. "Study on the power performance of wave energy converters mounted around an offshore wind turbine jacket platform," Renewable Energy, Elsevier, vol. 221(C).
    10. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    11. Xu, Shuaijun & Ji, Baifeng & Xu, Fan & Chen, Changkun, 2024. "Dynamic response and power performance of a combined semi-submersible floating wind turbine and point absorber wave energy converter array," Renewable Energy, Elsevier, vol. 237(PD).
    12. Bubbar, K. & Buckham, B. & Wild, P., 2018. "A method for comparing wave energy converter conceptual designs based on potential power capture," Renewable Energy, Elsevier, vol. 115(C), pages 797-807.
    13. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    14. Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
    15. Li, Demin & Sharma, Sanjay & Wang, Tianyuan & Borthwick, Alistair G.L. & Dong, Xiaochen & Shi, Hongda, 2024. "Optimal hydraulic PTO and linear permanent magnet generator for a floating two-buoy wave energy converter," Renewable Energy, Elsevier, vol. 234(C).
    16. Robertson, Bryson & Bailey, Helen & Buckham, Bradley, 2019. "Resource assessment parameterization impact on wave energy converter power production and mooring loads," Applied Energy, Elsevier, vol. 244(C), pages 1-15.
    17. Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.
    18. Wang, LiGuo & Lin, MaoFeng & Tedeschi, Elisabetta & Engström, Jens & Isberg, Jan, 2020. "Improving electric power generation of a standalone wave energy converter via optimal electric load control," Energy, Elsevier, vol. 211(C).
    19. Zhigang Liu & Wei Huang & Shi Liu & Xiaomei Wu & Chun Sing Lai & Yi Yang, 2023. "An Improved Hydraulic Energy Storage Wave Power-Generation System Based on QPR Control," Energies, MDPI, vol. 16(2), pages 1-18, January.
    20. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:241-:d:714501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.