IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipds0960148124019712.html
   My bibliography  Save this article

Dynamic response and power performance of a combined semi-submersible floating wind turbine and point absorber wave energy converter array

Author

Listed:
  • Xu, Shuaijun
  • Ji, Baifeng
  • Xu, Fan
  • Chen, Changkun

Abstract

With the global demand for renewable energy rising, offshore renewable energy development has gained more attention. The combination of wind and wave energy is a new trend. Ensuring stability in combined systems is crucial for efficiency of absorbing energy. A novel combined wind and wave energy system with a semi-submersible floating wind turbine (FWT) and an array of six torus-shaped point absorber wave energy converters (WECs) is proposed. The dynamic response of combined system is investigated using 3D potential flow theory by comparing to the original system. The effects of power take-off (PTO) damping, WEC float shape and seasonal variation on the dynamic response and power performance of combined system are studied. The results show that the addition of WEC array improves the stability and power production of combined system. Meanwhile, the total power of combined system is approximately 2.5%–6.5 % higher than that of original system. PTO damping mainly affects the heave motion of combined system. As PTO damping increases, the first peak of mean power of WEC array shifts towards the long period, while the second peak of that shifts towards the short period. The conical-bottom WEC generates the most power compared to the flat-bottom WEC, hemispherical-bottom WEC and concave-bottom WEC. The combined system generates the most power in winter, and the total annual electricity output can be up to 2.99 × 104 MWh.

Suggested Citation

  • Xu, Shuaijun & Ji, Baifeng & Xu, Fan & Chen, Changkun, 2024. "Dynamic response and power performance of a combined semi-submersible floating wind turbine and point absorber wave energy converter array," Renewable Energy, Elsevier, vol. 237(PD).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019712
    DOI: 10.1016/j.renene.2024.121903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.