IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2078-d769723.html
   My bibliography  Save this article

Scalable Room Occupancy Prediction with Deep Transfer Learning Using Indoor Climate Sensor

Author

Listed:
  • Davor Stjelja

    (Department of Mechanical Engineering and Automation, Aalto University, 02150 Espoo, Finland
    Innovations, Granlund Oy, 00701 Helsinki, Finland)

  • Juha Jokisalo

    (Department of Mechanical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

  • Risto Kosonen

    (Department of Mechanical Engineering and Automation, Aalto University, 02150 Espoo, Finland
    College of Urban Construction, Nanjing Tech University, Nanjing 211800, China)

Abstract

An important instrument for achieving smart and high-performance buildings is Machine Learning (ML). A lot of research has been done in exploring the ML models for various applications in the built environment such as occupancy prediction. Nevertheless, the research focused mostly on analyzing the feasibility and performance of different supervised ML models but has rarely focused on practical applications and the scalability of those models. In this study, a transfer learning method is proposed as a solution to typical problems in the practical application of ML in buildings. Such problems are scaling a model to a different building, collecting ground truth data necessary for training the supervised model, and assuring the model is robust when conditions change. The practical application examined in this work is a deep learning model used for predicting room occupancy using indoor climate IoT sensors. This work proved that it is possible to significantly reduce the length of ground truth data collection to only two days. The robustness of the transferred model was tested as well, where performance stayed on a similar level if a suitable normalization technique was used. In addition, the proposed methodology was tested with room occupancy level prediction, showing slightly lower performance. Finally, the importance of understanding the performance metrics is crucial for market adoption of ML-based solutions in the built environment. Therefore, in this study, additional analysis was done by presenting the occupancy prediction model performance in understandable ways from the practical perspective.

Suggested Citation

  • Davor Stjelja & Juha Jokisalo & Risto Kosonen, 2022. "Scalable Room Occupancy Prediction with Deep Transfer Learning Using Indoor Climate Sensor," Energies, MDPI, vol. 15(6), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2078-:d:769723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
    3. Wolf, Sebastian & Calı̀, Davide & Krogstie, John & Madsen, Henrik, 2019. "Carbon dioxide-based occupancy estimation using stochastic differential equations," Applied Energy, Elsevier, vol. 236(C), pages 32-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    2. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    3. An, Na & Huang, Chenyu & Shen, Yanting & Wang, Jinyu & Yu, Zhongqi & Fu, Jiayan & Liu, Xiao & Yao, Jiawei, 2024. "Efficient data-driven prediction of household carbon footprint in China with limited features," Energy Policy, Elsevier, vol. 185(C).
    4. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).
    5. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Chen, Wei-Han & You, Fengqi, 2024. "Sustainable energy management and control for Decarbonization of complex multi-zone buildings with renewable solar and geothermal energies using machine learning, robust optimization, and predictive c," Applied Energy, Elsevier, vol. 372(C).
    7. Monika Górska & Marta Daroń, 2021. "Importance of Machine Modernization in Energy Efficiency Management of Manufacturing Companies," Energies, MDPI, vol. 14(24), pages 1-19, December.
    8. Jierui Dong & Nigel Goodman & Priyadarsini Rajagopalan, 2023. "A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools," IJERPH, MDPI, vol. 20(15), pages 1-18, July.
    9. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    10. Zedong Jiao & Xiuli Du & Zhansheng Liu & Liang Liu & Zhe Sun & Guoliang Shi & Ruirui Liu, 2023. "A Review of Theory and Application Development of Intelligent Operation Methods for Large Public Buildings," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    11. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).
    12. Deepu Krishnan & Scott Kelly & Yohan Kim, 2022. "A Meta-Analysis Review of Occupant Behaviour Models for Assessing Demand-Side Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-23, February.
    13. Pedro Fernández de Córdoba & Frank Florez Montes & Miguel E. Iglesias Martínez & Jose Guerra Carmenate & Romeo Selvas & John Taborda, 2023. "Design of an Algorithm for Modeling Multiple Thermal Zones Using a Lumped-Parameter Model," Energies, MDPI, vol. 16(5), pages 1-22, February.
    14. Giuseppe Anastasi & Carlo Bartoli & Paolo Conti & Emanuele Crisostomi & Alessandro Franco & Sergio Saponara & Daniele Testi & Dimitri Thomopulos & Carlo Vallati, 2021. "Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario," Energies, MDPI, vol. 14(8), pages 1-17, April.
    15. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    16. Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    17. Panagiotis Korkidis & Anastasios Dounis & Panagiotis Kofinas, 2021. "Computational Intelligence Technologies for Occupancy Estimation and Comfort Control in Buildings," Energies, MDPI, vol. 14(16), pages 1-33, August.
    18. Xiaoming Yang & Shamsulariffin Samsudin & Yuxuan Wang & Yubin Yuan & Tengku Fadilah Tengku Kamalden & Sam Shor Nahar bin Yaakob, 2023. "Application of Target Detection Method Based on Convolutional Neural Network in Sustainable Outdoor Education," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    19. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2078-:d:769723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.