IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp32-41.html
   My bibliography  Save this article

Carbon dioxide-based occupancy estimation using stochastic differential equations

Author

Listed:
  • Wolf, Sebastian
  • Calı̀, Davide
  • Krogstie, John
  • Madsen, Henrik

Abstract

In the existing building stock, heating, cooling and ventilation usually run on fixed schedules, in many cases, even all day. In particular, ventilation systems often run with a constant air flow rate that is adjusted based on the assumption of maximum occupancy. Hence, reducing the operation to the required extent would offer energy potential. Model-based, demand-controlled heating, ventilation and air-conditioning systems can help to achieve this. Information on the number of occupants present in a room and ventilation-related quantities, such as the room-air change rate, are important parameters to control the ventilation of a building. Hence, an automated estimation of these would help to find optimal model-based control strategies. In this work, the use of a grey-box model based on a carbon dioxide mass balance is explored to estimate room occupancy and ventilation parameters. The main contribution of this study is the employment of stochastic differential equations to describe this mass balance. In contrast to ordinary differential equations, the stochastic framework employed here is able to address measurement errors as well as errors that derive from an inevitably oversimplified description of the physical system. Due to its probabilistic nature, this approach inherently includes a method of parameter estimation using the maximum likelihood approach, which additionally provides a measure of uncertainty for every estimated parameter. The presented model was tested in one naturally ventilated and one mechanically ventilated office room. In both cases, the estimation of occupancy and of the model parameters showed promising results. This leads to the conclusion that the suggested model can be considered as a candidate to be integrated into building control systems.

Suggested Citation

  • Wolf, Sebastian & Calı̀, Davide & Krogstie, John & Madsen, Henrik, 2019. "Carbon dioxide-based occupancy estimation using stochastic differential equations," Applied Energy, Elsevier, vol. 236(C), pages 32-41.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:32-41
    DOI: 10.1016/j.apenergy.2018.11.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191831794X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Korkidis & Anastasios Dounis & Panagiotis Kofinas, 2021. "Computational Intelligence Technologies for Occupancy Estimation and Comfort Control in Buildings," Energies, MDPI, vol. 14(16), pages 1-33, August.
    2. Giuseppe Anastasi & Carlo Bartoli & Paolo Conti & Emanuele Crisostomi & Alessandro Franco & Sergio Saponara & Daniele Testi & Dimitri Thomopulos & Carlo Vallati, 2021. "Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    4. Davor Stjelja & Juha Jokisalo & Risto Kosonen, 2022. "Scalable Room Occupancy Prediction with Deep Transfer Learning Using Indoor Climate Sensor," Energies, MDPI, vol. 15(6), pages 1-21, March.
    5. Deepu Krishnan & Scott Kelly & Yohan Kim, 2022. "A Meta-Analysis Review of Occupant Behaviour Models for Assessing Demand-Side Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-23, February.
    6. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    2. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    3. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    4. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    5. Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
    6. Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
    7. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    8. Žáčeková, Eva & Váňa, Zdeněk & Cigler, Jiří, 2014. "Towards the real-life implementation of MPC for an office building: Identification issues," Applied Energy, Elsevier, vol. 135(C), pages 53-62.
    9. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "Development of a Linear Regression Model Based on the Most Influential Predictors for a Research Office Cooling Load," Energies, MDPI, vol. 15(14), pages 1-20, July.
    10. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    11. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    12. Seddigheh Norouziasl & Sorena Vosoughkhosravi & Amirhosein Jafari & Zhihong Pang, 2024. "Assessing the Influence of Occupancy Factors on Energy Performance in US Small Office Buildings," Energies, MDPI, vol. 17(21), pages 1-31, October.
    13. Amin, Amin & Mourshed, Monjur, 2024. "Weather and climate data for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Bożena Babiarz & Władysław Szymański, 2020. "Introduction to the Dynamics of Heat Transfer in Buildings," Energies, MDPI, vol. 13(23), pages 1-28, December.
    15. Löhr, Yannik & Wolf, Daniel & Pollerberg, Clemens & Hörsting, Alexander & Mönnigmann, Martin, 2021. "Supervisory model predictive control for combined electrical and thermal supply with multiple sources and storages," Applied Energy, Elsevier, vol. 290(C).
    16. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    17. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    18. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
    19. Siva Swaminathan & Ximan Wang & Bingyu Zhou & Simone Baldi, 2018. "A University Building Test Case for Occupancy-Based Building Automation," Energies, MDPI, vol. 11(11), pages 1-15, November.
    20. Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:32-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.