IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8766-d432877.html
   My bibliography  Save this article

Environmental Flows Assessment in Nepal: The Case of Kaligandaki River

Author

Listed:
  • Naresh Suwal

    (Department of Civil Engineering, Khwopa College of Engineering, Bhaktapur 44800, Nepal)

  • Alban Kuriqi

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • Xianfeng Huang

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Gulou District, Nanjing 210098, China)

  • João Delgado

    (CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • Dariusz Młyński

    (Department of Sanitary Engineering and Water Management, University of Agriculture in Krakow, St. Mickiewicza 24–28, 30-059 Krakow, Poland)

  • Andrzej Walega

    (Department of Sanitary Engineering and Water Management, University of Agriculture in Krakow, St. Mickiewicza 24–28, 30-059 Krakow, Poland)

Abstract

Environmental flow assessments (e-flows) are relatively new practices, especially in developing countries such as Nepal. This study presents a comprehensive analysis of the influence of hydrologically based e-flow methods in the natural flow regime. The study used different hydrological-based methods, namely, the Global Environmental Flow Calculator, the Tennant method, the flow duration curve method, the dynamic method, the mean annual flow method, and the annual distribution method to allocate e-flows in the Kaligandaki River. The most common practice for setting e-flows consists of allocating a specific percentage of mean annual flow or portion of flow derived from specific percentiles of the flow duration curve. However, e-flow releases should mimic the river’s intra-annual variability to meet the specific ecological function at different river trophic levels and in different periods over a year covering biotas life stages. The suitability of the methods was analyzed using the Indicators of Hydrological Alterations and e-flows components. The annual distribution method and the 30%Q-D (30% of daily discharge) methods showed a low alteration at the five global indexes for each group of Indicators of Hydrological Alterations and e-flows components, which allowed us to conclude that these methods are superior to the other methods. Hence, the study results concluded that 30%Q-D and annual distribution methods are more suitable for the e-flows implementation to meet the riverine ecosystem’s annual dynamic demand to maintain the river’s health. This case study can be used as a guideline to allocate e-flows in the Kaligandaki River, particularly for small hydropower plants.

Suggested Citation

  • Naresh Suwal & Alban Kuriqi & Xianfeng Huang & João Delgado & Dariusz Młyński & Andrzej Walega, 2020. "Environmental Flows Assessment in Nepal: The Case of Kaligandaki River," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8766-:d:432877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rawshan Ali & Alban Kuriqi & Shadan Abubaker & Ozgur Kisi, 2019. "Hydrologic Alteration at the Upper and Middle Part of the Yangtze River, China: Towards Sustainable Water Resource Management Under Increasing Water Exploitation," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    2. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    3. Suwal, Naresh & Huang, Xianfeng & Kuriqi, Alban & Chen, Yingqin & Pandey, Kamal Prasad & Bhattarai, Khem Prasad, 2020. "Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes," Renewable Energy, Elsevier, vol. 158(C), pages 453-464.
    4. Smakhtin, Vladimir & Anputhas, Markandu, 2006. "An assessment of environmental flow requirements of Indian river basins," IWMI Research Reports H039610, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    2. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    3. Młyński, Dariusz & Książek, Leszek & Bogdał, Andrzej, 2024. "Meteorological drought effect for Central Europe's hydropower potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Adán Acosta-Banda & Verónica Aguilar-Esteva & Miguel Patiño Ortiz & Julián Patiño Ortiz, 2021. "Construction and Validity of an Instrument to Evaluate Renewable Energies and Energy Sustainability Perceptions for Social Consciousness," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    5. Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Dariusz Młyński, 2022. "Investigation of the Effect of Climate Change on Energy Produced by Hydroelectric Power Plants (HEPPs) by Trend Analysis Method: A Case Study for Dogancay I–II HEPPs," Energies, MDPI, vol. 15(7), pages 1-17, March.
    6. Yiran Wang & Dahong Zhang & Yahui Wang, 2021. "Evaluation Analysis of Forest Ecological Security in 11 Provinces (Cities) of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    7. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    8. Nurdan Kuban, 2021. "Hydroelectric Plants and Dams as Industrial Heritage in the Context of Nature-Culture Interrelation: An Overview of Examples in Turkey," Energies, MDPI, vol. 14(5), pages 1-21, February.
    9. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    10. Fuxun Chen & Lanxin Zhang & Siyu Kang & Lutong Chen & Honghong Dong & Dan Li & Xiaozhu Wu, 2023. "Soft-NMS-Enabled YOLOv5 with SIOU for Small Water Surface Floater Detection in UAV-Captured Images," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    11. Shaokun He & Lei Gu & Jing Tian & Lele Deng & Jiabo Yin & Zhen Liao & Ziyue Zeng & Youjiang Shen & Yu Hui, 2021. "Machine Learning Improvement of Streamflow Simulation by Utilizing Remote Sensing Data and Potential Application in Guiding Reservoir Operation," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    12. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    2. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    3. Zhang, Ditian & Tang, Pan, 2023. "Forecasting European Union allowances futures: The role of technical indicators," Energy, Elsevier, vol. 270(C).
    4. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    5. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    7. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Jia, Jinda & Shan, Xiaobiao & Upadrashta, Deepesh & Xie, Tao & Yang, Yaowen & Song, Rujun, 2020. "An asymmetric bending-torsional piezoelectric energy harvester at low wind speed," Energy, Elsevier, vol. 198(C).
    10. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    11. Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
    12. Linze Li & Nana Yang & Jiansong Li & Ankang He & Huan Yang & Zilong Jiang & Yumin Zhao, 2021. "Exploring the interactive coupled relationship between urban construction and resource environment in Wuhan, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11179-11200, August.
    13. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    14. Solangi, Yasir Ahmed & Longsheng, Cheng & Shah, Syed Ahsan Ali, 2021. "Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 173(C), pages 209-222.
    15. Suwal, Naresh & Huang, Xianfeng & Kuriqi, Alban & Chen, Yingqin & Pandey, Kamal Prasad & Bhattarai, Khem Prasad, 2020. "Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes," Renewable Energy, Elsevier, vol. 158(C), pages 453-464.
    16. Lee, Chien-Chiang & Ranjbar, Omid & Lee, Chi-Chuan, 2021. "Testing the persistence of shocks on renewable energy consumption: Evidence from a quantile unit-root test with smooth breaks," Energy, Elsevier, vol. 215(PB).
    17. Kou, Yu & Bie, Zhaohong & Li, Gengfeng & Liu, Fan & Jiang, Jiangfeng, 2021. "Reliability evaluation of multi-agent integrated energy systems with fully distributed communication," Energy, Elsevier, vol. 224(C).
    18. Chen, Liang, 2020. "Impacts of climate change on wind resources over North America based on NA-CORDEX," Renewable Energy, Elsevier, vol. 153(C), pages 1428-1438.
    19. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2021. "Pathways to electric mobility integration in the Italian automotive sector," Energy, Elsevier, vol. 221(C).
    20. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8766-:d:432877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.